Radial transfer of tracking data with wireless links

Daniel Pelikan

Uppsala University

2-6 June 2014

Authors: PELIKAN, Daniel¹; BRENNER, Richard¹; DANCILA, Dragos²; GUSTAFSSON, Leif¹; BINGEFORS, Nils¹

¹ Uppsala University, Department of Physics and Astronomy

² Uppsala University, Department of Engineering Sciences

Daniel Pelikan Uppsala University

- Why wireless in the track triggers
- 60 GHz technology
- What can we do with it?
- Design of antennas
- Passive data transfer through a tracker
- Summary & Outlook

Why wireless in the track trigger

The current readout is not optimal to build a track trigger.

Axial tracker readout resulting in long paths, long latency etc.

- How can wireless technology help to solve the problem?
 - Radial data transfer becomes possible.
 - No cables and connectors needed for data transfer.
 - Topological readout.
 - Build in intelligence into tracking.
 - Small and low mass components.
 - Low power and cost.
 - High bandwidth >5 Gbits/s.

Physics events are triggered in Rol that are conical regions radial from the interaction point in Φ and η .

With wireless we can avoid this^m region if we can transmit through silicon layers.

Daniel Pelikan

60 GHz technology

- mm waves
 - Small structures
- Up to 7 GHz unlicensed frequency spectrum.
 - Enormous bandwidth for data transfer.
- Fast developing technology.
 - First implementations are commercially available.
 - A lot of products are expected in the consumer marked, wireless uncompressed video connections...
 - Low power.
 - Achievable in 65nm CMOS.

Daniel Pelikan

What can we do with it?

- Build up radial data transfer links.
 - Low latency.
- Different frequencies per layer:
 - 60 GHz does not penetrate through the detector layers.
- Pre analysis already on the layer.
 - Use multiple layer's correlation to reduce fakes.

Radial readout Uppsala University

Two-in-one layer separated by 3 mm \rightarrow pT cut on a few GeV possible in ATLAS. Two two-in-one layer separated by 20cm \rightarrow pT cut ~10 GeV possible

Correlation between layers

Antenna design

- We have started to design and produce patch antennas.
 - Single and antenna arrays.
 - Can be produced on PCB material.
 - Etching and milling.
 - Rogers, DuPont PCB material
 - Very small structure sizes.

1.8 mm

Antenna design - simulation

Single patch

Antenna design - simulation

Designs for multi patch antennas.

- 4 Patch design.
- More focused radiation pattern.
 - reduced cross talk,
 - denser packing of links,
 - higher gain =lower power

S-parameters:

- Describe the input-output relationship between ports in an electrical system.
- Ex.: 2 ports (Port 1 and Port 2), then S12 represents the power transferred from Port 2 to Port 1.
- Having a transmitter with an antenna connected:
 - S11 is the reflected power Port 1 is trying to deliver to antenna 1.
 - 0dB all power is reflected
 - 30dB and below almost no power is reflected
 - \rightarrow good matching
- Frequency depending variable.

Antenna design Simulation vs Real

 Agilent Technology Signal Generator and Vector Network Analyser

Daniel Pelikan

Antenna design Simulation vs Real

Compare simulation with a manufactured antenna.

- This gives feedback how well simulation matches reality.
- Etched antennas were used (PCB etching process).
 - 4 Patch antenna array: very good agreement with simulation.
 - I Patch antenna: a shift of ~500MHz.
 - This is good result and shows that antenna production is feasible.

Required fabrication precision

- The effect of fabrication tolerances were studied:
 - Mill too deep through the cooper (remove substrate)
 - ${\scriptstyle \bullet} \rightarrow$ frequency shift to higher f
 - Antenna outer edges 5 um too large
 - $\ensuremath{\,\scriptstyle\bullet}\xspace \to$ frequency shift to lower f
 - * Antenna outer edges 5 um too small
 - ${\scriptstyle \bullet} \rightarrow$ frequency shift to high f

 $\blacksquare \rightarrow$ Tolerances as small as 5µm can cause shift

- The amount of electronics could be reduced significantly if one could radiate through detector layers.
 - No active hardware would be needed as a repeater.
 - The links are spread out uniformly around detector and do not have to be routed to the extremely dense gap at η~0.8
- Simple approach:
 - One receiver antenna on one side and a transmitter antenna on the other side.
 - Antennas are connected by a micro strip, no active electronics.

- The test setup
 - SIVERSIMA 60 GHz up down converter cards.
 - Duplex card RX and TX.
 - I and Q separately available.
 - Connected horn antennas.

1, 4 and 16 Patch design.

- Patches are connected by micro strip transformers (needed for impedance matching).
- Antenna arrays are connected by a micro strip.

Two setup

- Aluminium Plate with small gap to bring though the antenna.
 - Gap is closed by metal tape.
- * Aluminium detector model.
 - 2 detector layers.

We are coming trough both setup with just the passive antennas

A BPSK modulated digital signal was send through one detector layer without observing problems.

Daniel Pelikan

Power loss in the detector layers

- Frequency dependence of the antenna can be observed
- 16 Patch 16 Patch antenna were used

Power estimate:

- Horn to Horn 12 cm distance:
 - ~ -40 dBm @ 57.2GHz
- ★ Single antenna : ~ -60dBm
- ✤ Two antennas : ~ -80dBm
- Background
- We have ~20dB insertion loss per detector layer.
- The test was performed with 0.001 W output power
 - +10 dB gain on RX side

Summary & Outlook

Summary

- Wireless data transfer inside a detector system would open up a lot of new possibilities.
 - A key ingredient for a fast track trigger.
- We have designed antennas with feature size and performance compatible with high bandwidth read out of data from tracking detectors.
- We have shown that we can bring data through silicon layers radially with passive repeater structures.
- Outlook:
 - We will study data transfer and modulation schemes.
 - An interesting thing is if each readout ASIC can transmit individually to avoid having to collect all read out data to a separate MUX-transeiver chip on hybrid.

Power consumption

- Low power 60 GHz transceiver that includes RF, LO, PLL and base band signal paths integrated into a single chip
- Fabricated in a standard 90 nm CMOS
- With a 1.2 V supply the chip consumes 170 mW while transmitting 10 dBm (10mW) and 138 mW while receiving.
- Designed for 10 Gb/s communication using QPSK modulation
- A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry
 - Published in : Solid-State Circuits, IEEE Journal of (Volume:44, Issue: 12) Page: 3434 - 3447

2.5 mm

Generation of the test frequency

Up conversion (TX)

 I and Q part of the signal is mixed with the frequency of the Local Oscillator (LO)

- Modulates the baseband on the carrier frequency (60 GHz ± baseband)
- The mixed I and Q part is summed and send through the antenna.

Daniel Pelikan U

Receiving of the test frequency

Down conversion (RX)

Received signal is mixed with 60GHz carrier frequency.

* (60 GHz ± baseband) ± 60 GHz

• With the low pass filter the baseband is extracted.

Angular dependence measurement.

Daniel Pelikan

The angular dependence of the antennas was tested measuring the transmitted power through one layer under different angles -22° to 22°.

The more patches the more focus and gain we get.

27

45

60

315

-50

- Different Antennas were tested.
 - 1, 4, 16 patch
- The maximum throughput through the antenna was measured at different frequencies.
- A clear dependence on the amount of patches can be seen.
 - * As well as a slight frequency dependence.

Horn-Horn 9.5cm distance Horn-Horn 35cm distance 16 Patch (Antenna 1) 16 Patch (Antenna 2) 4 Patch 1 Patch Cutoff Background