Calorimetry in ALICE at LHC

Tatsuya Chujo

University of Tsukuba for the ALICE Collaboration

International Conference on Technology and Instrumentation in Particle Physics (TIPP '14) Amsterdam, The Netherlands June 2-6, 2014

Outline

1. Electromagnetic Calorimeters in ALICE

- ALICE Experiment
- PHOS
- EMCal
- Performance (2009-2013)
- 2. Upgrade during LHC long shutdown (2013-2014)
 - EMCal extension (DCal), PHOS upgrade
 - SRU readout upgrade (EMCal/DCal, PHOS)

3. Future plan

• Forward Calorimeter (FoCal)

4. Summary

1. Electromagnetic Calorimeters in ALICE

ALICE Physics Program and Hard Processes

Physics Goal of ALICE:

To study/ characterize the properties of hot, dense, de-confined matter ("Quark Gluon Plasma", QGP) as produced on a "macroscopic" scale in central Pb+Pb collisions at the LHC.

Initial temperature of matter:

- Thermal γ radiation from QGP
- Parton energy loss in QGP (jet quenching):
 - Probe the "stopping power" of the medium
 - dE/dx for partons in QGP
- Requires EM calorimetry
 - Measure EM energy to provide total jet energy (or recoil γ)
 - Provide jet (or γ) trigger
 - Thermal γ , π^0 .

The ALICE Experiment

The ALICE Photon Spectrometer (PHOS)

Design goal: To measure π^0 's and thermal photons (Initial T)

PbWO₄ crystals

- APD Photosensor
- Crystals at -25° C \rightarrow ~triple LY
- 10,752 crystals installed
- At 4.6m from IR.
- $\Delta \eta = 0.24, \ \Delta \phi = 60^{\circ} (100^{\circ})$
- Full-scale Energy: 100 GeV

3 of 5 Super-Modules installed (Run-1)

56x64 crystal array

6

The ALICE Photon Spectrometer (PHOS)

$PbWO_4$ crystals 2.2 x 2.2 x 18 cm

- 20 X₀
- APD + Preamp on crystal
- Crystals at -25 °C
- $\Delta \eta = 0.24$, $\Delta \phi = 60^{\circ} (100^{\circ})$

High resolution, low occupancy, but limited acceptance.

100μm Stainless steel honeycomb

The Electromagnetic Calorimeter (EMCal)

Lead-Scintillator Sampling Calorimeter $\Delta \eta = 1.4, \ \Delta \phi = 107^{\circ}$

Shashlik Geometry, APD Photosensor 12,288 Towers

Large acceptance with moderate resolution and occupancy.

- A late addition to ALICE
- Funding approval: Feb. 2008

EMCal Assembly

EMCal Readout

- 4 x (6x6 cm²) towers/module
- WLS fiber readout on 1cm grid
- 5x5 mm² Hamamatsu and Perkin Elmer APDs
- ~4.5 photo-electrons/MeV at gain M=1
- Operated at nominal gain M=30
- Full-scale Energy = 250 GeV

EMCal SM Readout Assembly and Readout

- 2 FEE crates per SM
 - 36 + 1 FEE cards + 3 TRU (Trigger Region Unit) per SM
- 1 Readout+Detector Control Unit (RCU(Readout Control Unit) +DCS) per FEE crate
 - Control via ethernet. Readout via fiber optic (ALICE DDL standard)
 - 2 GTL Readout/Control Bus per FEE crate

ALICE

EMCal/PHOS Performance

PHOS

- Both calorimeters have had extensive beam tests at the CERN PS
- Important for detailed response description in Monte Carlo simulation

L0 and L1 Trigger efficiencies

E/p response (EMCal)

• Seen clear E/p peak (p-Pb, 5.02 TeV), and demonstrated clear discrimination between hadrons and electrons.

Invariant mass spectra in p+p: π^0

PHOS

EMCal

Invariant mass spectra in Pb+Pb (central): π^0

PHOS

EMCal

Mean and width of π^0 mass peak (p+p)

2. Upgrade during LHC long shutdown (2013-2014)

EMCal Extension/Upgrade (DCal)

DCal installation (2013 - 2014)

- 3 sectors of full DCal SMs, and 1 sector of 1/3 SMs
- C-side sectors installed in fall 2013, A-side to be installed in fall 2014
- L0 and L1 trigger geometry reconfiguration in on-going.
- DCal + PHOS common jet trigger is also under development.

PHOS new module and CPV for Run-2

- Added new PHOS 1SM (50% coverage of 1 SM = 1,792 crystals).
- For Run2, PHOS will have $3\frac{1}{2}$ modules with azimuthal coverage $\Delta \phi = 70^{\circ}$.
- Charged Particle Veto (CPV) will be installed in front of one PHOS SM.

FEE Upgrade: RCU/GTL bus ⇒ point-to-point SRU

- Replace 2 (RCU+DCS+SIU) + 4 GTL Bus with single SRU mod.
 - Developed by CERN-RD51.
 - Replace serial readout of 10 cards/GTL bus with parallel readout of all FEE boards
 - Minimum readout speed $\sim 30 \mu s$ (set by ALTROs in FEE)
 - FEE-SRU communication via DTC LVDS serial link
 - SRU-LDC communication via ALICE DDL protocol (or Gigabit ethernet)
 - Compatible with existing DDL readout fibers/RORC
 - **Results:** SRU readout allowed to achieve 20-50 times shorter readout time with respect to RCU readout in Run-1.
 - e.g.) PHOS readout time was 900 us (Run-1) -> up to 25 us by SRU.

June 2,2014

•

Current status of SRU in PHOS/EMCal/DCal

• PHOS:

- upgraded all FEE boards (~430).
- New SRU and FEE F/W is now being commissioned together w/ EMCal/DCal.

• EMCal/DCal:

- SRU switching over done (2013, spring)
- SRUs for all of EMCal + installed part of DCal (Cside)

June 2,2014

3. Future upgrade plan:

Direct photon measurements at forward rapidity region at LHC

Physics of photon measurements at forward $\eta @ LHC$

- Results from d-Au (RHIC), p-Pb (LHC) collisions, there are some indications of **Color Glass Condensate (CGC)** formation, but not conclusive.
- Main observables so far by hadrons, which include final state interaction.
- Experimental challenge: essential to make a measurement at forward direction by a cleaner probe, such as **direct photons**.
 - ➡ Larger kinematic reach in saturation region at LHC.
 - ➡ CGC vs. Glauber initial condition
 - \rightarrow key to understand the early thermalization of QGP.

•Electromagnetic calorimeter for γ and π^0 measurement, with Hadron Calorimeter.

• At $z \approx 8m$ (outside magnet) 3.3 < η < 5.3

Main challenge: separate γ/π⁰ at high energy
Need small Molière radius, high-granularity read-out
Si-W calorimeter, granularity ≈ 1mm²

FoCal-E Strawman Design

- Si/W sandwich calorimeter layer structure:
 - W absorbers (thickness 1X₀)+ Si sensors
- Longitudinal segmentation:
 - 4 segments low granularity (LG)
 - 2 segments high granularity (HG)

LG segments

- 4 (or 5) layers
- Si-pad with analog readout
- cell size 1 x 1 cm²
- longitudinally summed

• HG segments

- single layer
- CMOS-pixel (MAPS*)
- pixel size $\approx 25 \; x \; 25 \; \mu m^2$
- digitally summed in 1mm² cells

*MAPS = Monolithic Active Pixel Sensor (cm)

Detector Performance

lateral shower width for γ and merged π^0

pion rejection factor

- Reasonable energy resolution, extremely good two-shower separation with HG segments
- \rightarrow efficient pion rejection (e.g. via shower shape analysis)

High Granularity (HG) Prototype, MAPS

MAPS prototype

- 4x4 cm² cross section, 28 X₀ depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
 - 30 µm pixels
 - 640 μs integration time
 - (needs upgrade too slow for experiment)
- 39 M pixels total

0.0

x (cm)

• Test with beams at DESY, CERN PS, SPS

Event Display: *measurement (DESY) of pile-up of two 5.4 GeV electrons, demonstrates two-shower separation capabilities*

June 2,2014

Low Granularity (LG) Prototype, PAD

- First LG (PAD) prototype (ORNL).
 - Si-pad with analog readout.
 - cell size 1x1 cm²
 - longitudinally summed
- 4 tungsten plates are interleaved with silicon pad sensor layers.
 - ORNL ASICs are located on summing board on side of module.
 - Readout by RD-51 readout system
 - APV25 hybrid/ Beetle hybrid

<u>PLAN</u>

- The integrated system of FoCal-E (HG + LG) will be tested at PS (Sep. 2014) and SPS (Nov. 2014).
- Lol is under preparation, will be submitted in summer 2014 to ALICE.

June 2,2014

4. Summary

- Complimentary EM Calorimeters in ALICE:
 - **PHOS**: high resolution, low occupancy, limited acceptance, with emphasis to measure low $p_T \pi^0$'s and thermal photons
 - EMCal: Moderate resolution and occupancy, large acceptance with emphasis to measure Jets
 - Run-1 performance:
 - PHOS and EMCal have been working as design.
- Upgrades during LS1 (2013-2014):
 - DCal, PHOS upgrades, SRU readout upgrade
- Future upgrade in Forward region:
 - FoCal: direct direct photons to determine the initial condition of QGP, crucial to understand QGP properties.

