The Hottest, and Most Liquid, Liquid in the Universe

Krishna Rajagopal

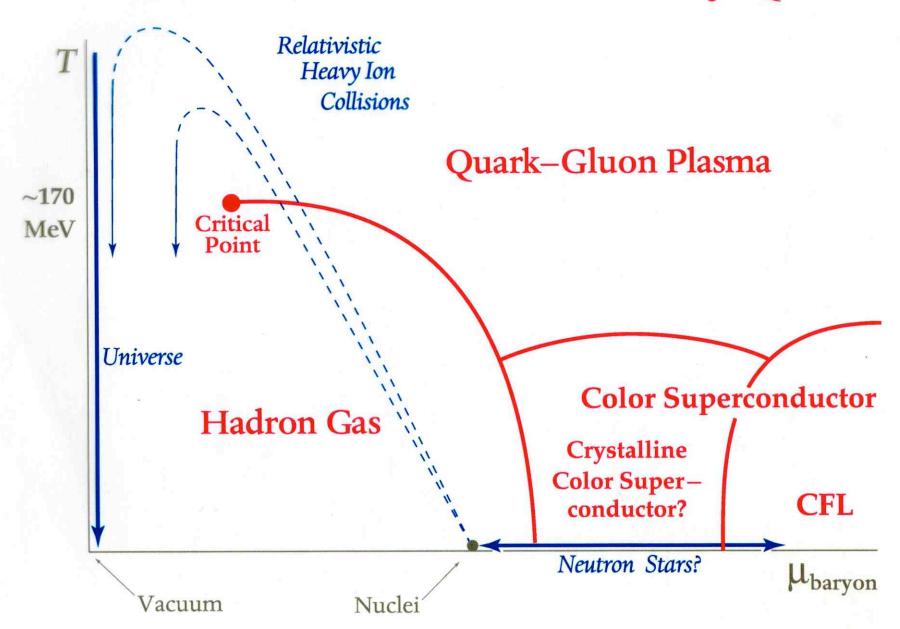
MIT & CERN

CERN Theory Colloquium; Sept 19, 2012

Liquid Quark-Gluon Plasma:

Opportunities and Challenges

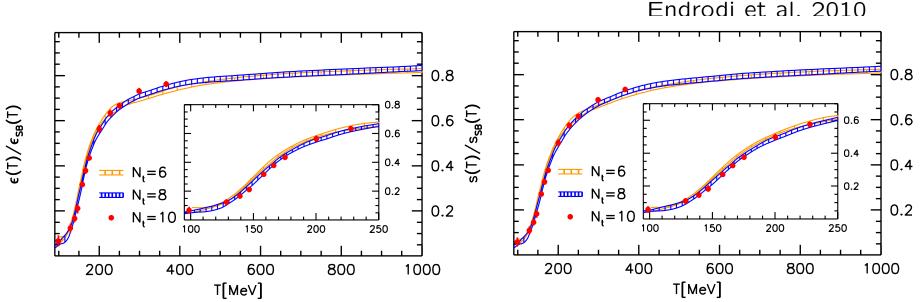
Krishna Rajagopal


MIT & CERN

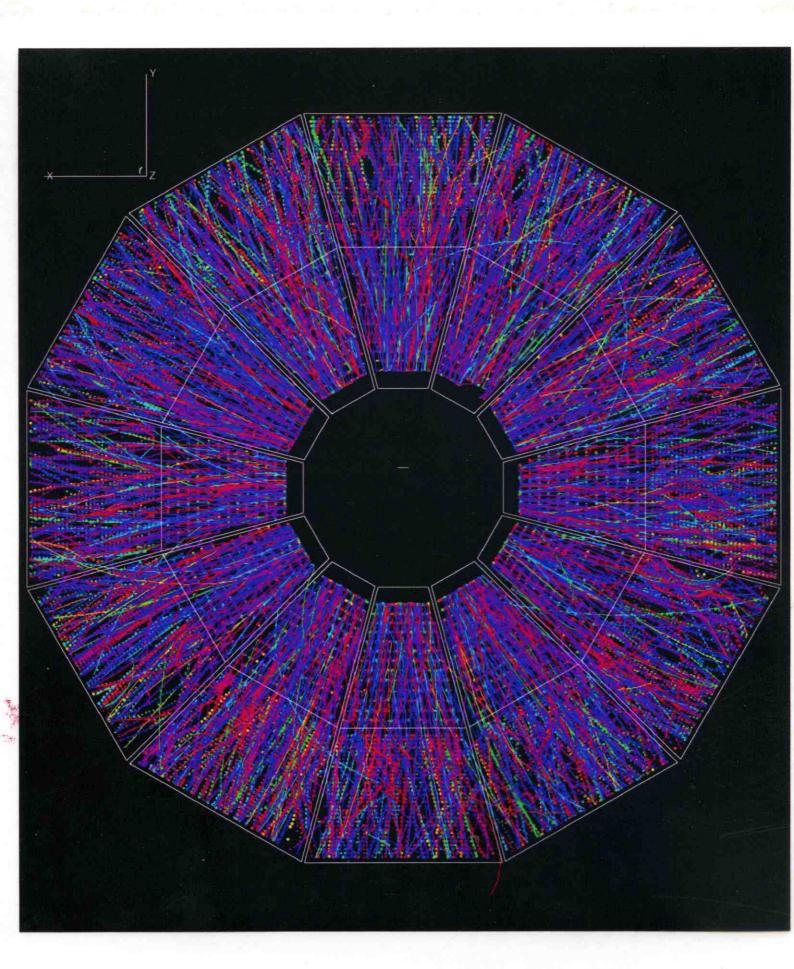
CERN Theory Colloquium; Sept 19, 2012

A Grand Opportunity

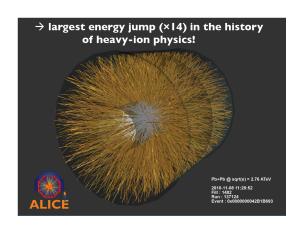
- By colliding "nuclear pancakes" (nuclei Lorentz contracted by $\gamma \sim 100$ and now $\gamma \sim 1400$), RHIC and now the LHC are making little droplets of "Big Bang matter": the stuff that filled the whole universe for the first few microseconds after the Big Bang.
- Using five detectors (PHENIX & STAR @ RHIC; ALICE, ATLAS & CMS @ LHC) scientists are answering questions about the microseconds-old universe that cannot be addressed by any conceivable astronomical observations made with telescopes and satellites.
- And, the properties of the matter that filled the microsecond old universe turn out to be interesting. The Liquid Quark-Gluon Plasma shares common features with forms of matter that arise in condensed matter physics, atomic physics and black hole physics, and that pose challenges that are central to each of these fields.

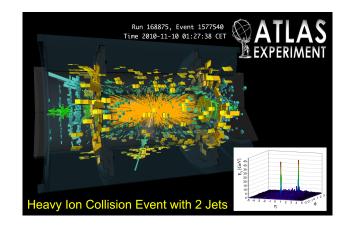

EXPLORING the PHASES of QCD

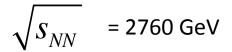
Quark-Gluon Plasma

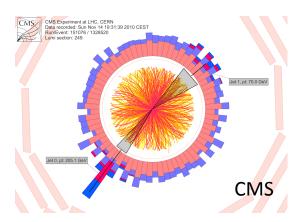

- The $T \to \infty$ phase of QCD. Entropy wins over order; symmetries of this phase are those of the QCD Lagrangian.
- Asymptotic freedom tells us that, for $T \to \infty$, QGP must be weakly coupled quark and gluon quasiparticles.
- Lattice calculations of QCD thermodynamics reveal a smooth crossover, like the ionization of a gas, occurring in a narrow range of temperatures centered at a $T_c \simeq 175~\text{MeV} \simeq 2~\text{trillion}$ °C $\sim 20~\mu\text{s}$ after big bang. At this temperature, the QGP that filled the universe broke apart into hadrons and the symmetry-breaking order that characterizes the QCD vacuum developed.
- Experiments now producing droplets of QGP at temperatures several times T_c , reproducing the stuff that filled the few-microseconds-old universe.

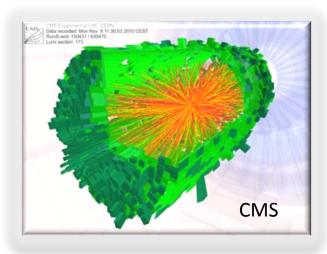
QGP Thermodynamics on the Lattice


Above $T_{\text{crossover}} \sim 150\text{-}200$ MeV, QCD = QGP. QGP static properties can be studied on the lattice.


Lesson of the past decade: don't try to infer dynamic properties from static ones. Although its thermodynamics is almost that of ideal-noninteracting-gas-QGP, this stuff is very different in its dynamical properties. [Lesson from experiment+hydrodynamics. But, also from the large class of gauge theories with holographic duals whose plasmas have ε and s at infinite coupling 75% that at zero coupling.]

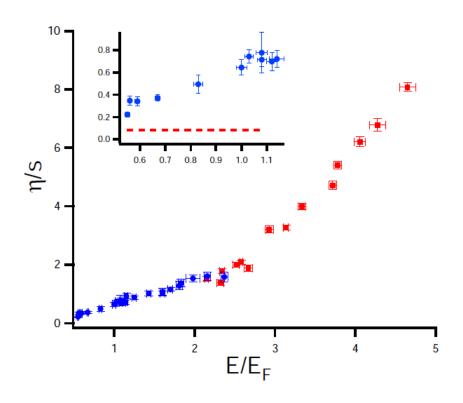



STAR


Nov 2010 first LHC Pb+Pb collisions

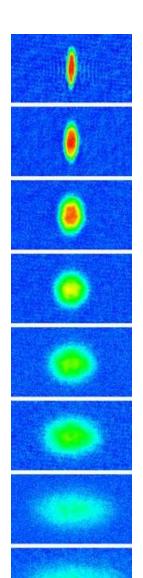
Integrated Luminosity =
$$10 \mu b^{-1}$$

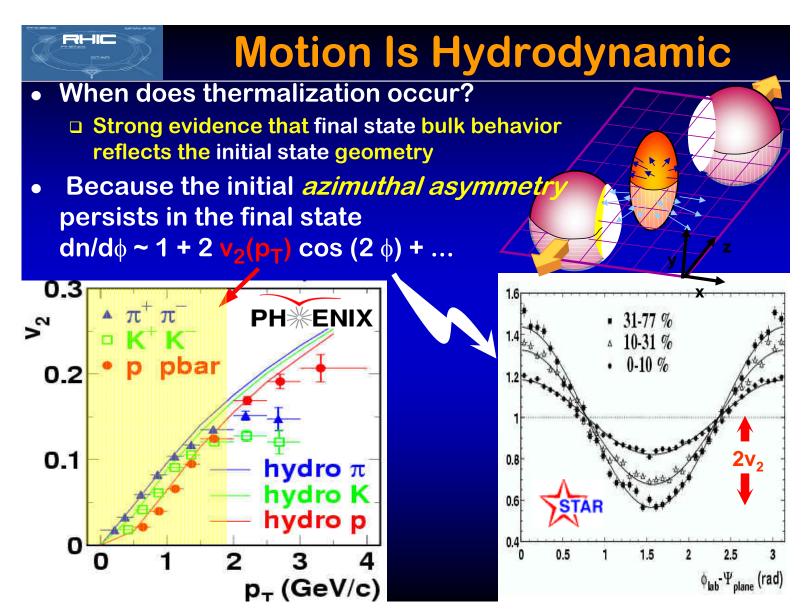
Liquid Quark-Gluon Plasma


- Hydrodynamic analyses of RHIC data on how asymmetric blobs of Quark-Gluon Plasma expand (explode) have taught us that QGP is a strongly coupled liquid, with (η/s) the dimensionless characterization of how much dissipation occurs as a liquid flows much smaller than that of all other known liquids except one.
- The discovery that it is a strongly coupled liquid is what has made QGP interesting to a broad scientific community.
- Can we make quantitative statements, with reliable error bars, about η/s ?
- Does the story change at the LHC?

Ultracold Fermionic Atom Fluid

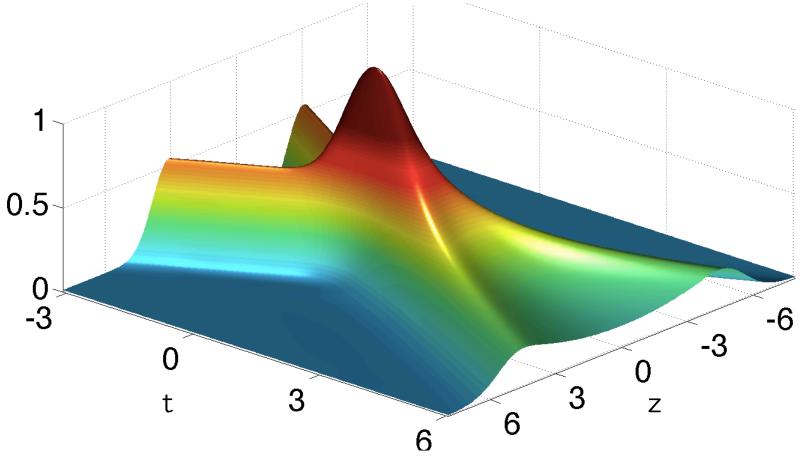
- The one terrestrial fluid with η/s comparably small to that of QGP.
- NanoKelvin temperatures, instead of TeraKelvin.
- Ultracold cloud of trapped fermionic atoms, with their two-body scattering cross-section tuned to be infinite. A strongly coupled liquid indeed. (Even though it's conventionally called the "unitary Fermi gas".)
- Data on elliptic flow (and other hydrodynamic flow patterns that can be excited) used to extract η/s as a function of temperature...


Viscosity to entropy density ratio


consider both collective modes (low T) and elliptic flow (high T)

Cao et al., Science (2010)

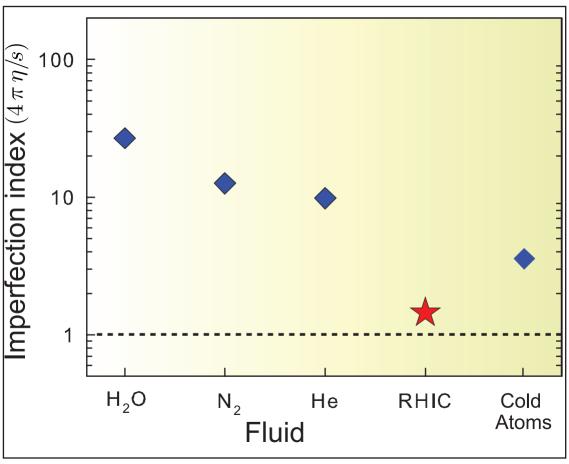
$$\eta/s \le 0.4$$

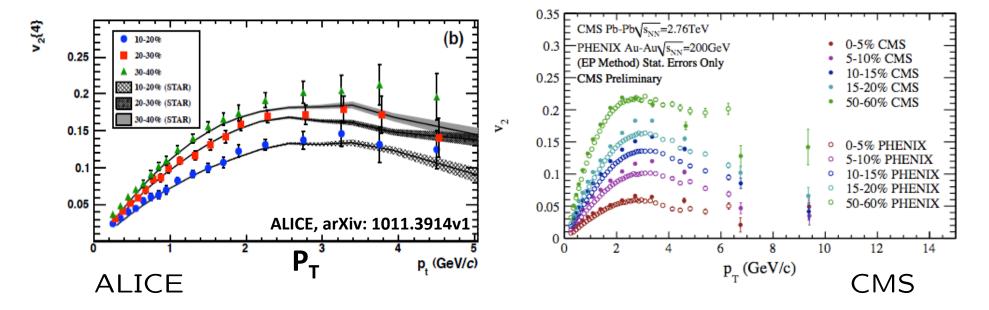


This old slide (Zajc, 2008) gives a sense of how data and hydrodynamic calculations of v_2 are compared, to extract η/s .

Rapid Equilibration?

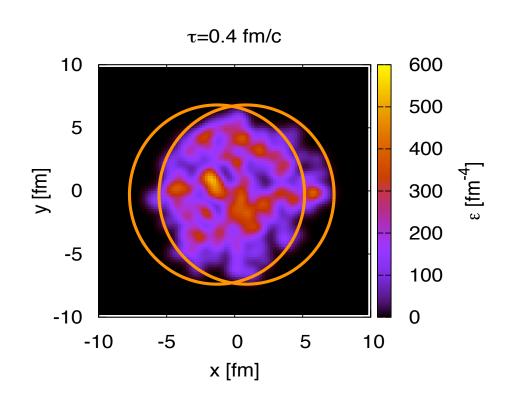
- Agreement between data and hydrodynamics can be spoiled either if there is too much dissipation (too large η/s) or if it takes too long for the droplet to equilibrate.
- Long-standing estimate is that a hydrodynamic description must already be valid only 1 fm after the collision.
- This has always been seen as rapid equilibration. Weak coupling estimates suggest equilbration times of 3-5 fm. And, 1 fm just sounds rapid.
- But, is it really? How rapidly does equilibration occur in a strongly coupled theory?


Colliding Sheets of Energy in a Strongly Coupled Theory


Hydrodynamics valid \sim 3 sheet thicknesses after the collision, i.e. \sim 0.35 fm after a RHIC collision. Equilibration after \sim 1 fm need not be thought of as rapid. Chesler, Yaffe arXiv:1011.3562

Determining η/s from RHIC data

- Using relativistic viscous hydrodynamics to describe expanding QGP, microscopic transport to describe late-time hadronic rescattering, and using RHIC data on pion and proton spectra and v_2 as functions of p_T and impact parameter...
- Circa 2010/2011: QGP@RHIC, with $T_c < T \lesssim 2T_c$, has $1 < 4\pi\eta/s < 2.5$. [Largest remaining uncertainty: assumed initial density profile across the "almond".] Song, Bass, Heinz, Hirano, Shen arXiv:1101.4638
- $4\pi\eta/s\sim 10^4$ for typical terrestrial gases, and 10 to 100 for all known terrestrial liquids except one. Hydrodynamics works much better for QGP@RHIC than for water.
- $4\pi\eta/s=1$ for any (of the by now very many) known strongly coupled gauge theory plasmas that are the "hologram" of a (4+1)-dimensional gravitational theory "heated by" a (3+1)-dimensional black-hole horizon.



What changes at the LHC?

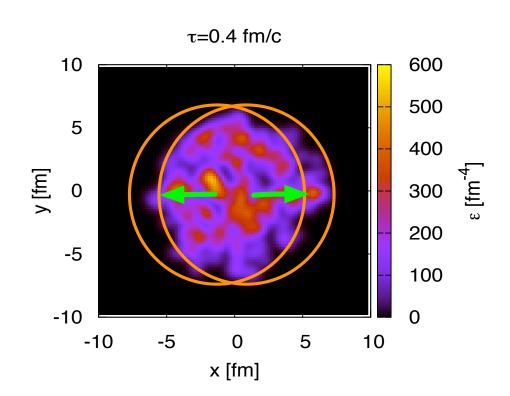
 $v_2(p_T)$ for charged hadrons similar at LHC and RHIC. At zeroth order, no apparent evidence for any change in η/s . The hotter QGP at the LHC is still a strongly coupled liquid.

Quantifying this, i.e. constraining the (small) temperature dependence of η/s in going from RHIC to LHC, requires separating effects of η/s from effects of initial density profile across the almond.

1. Characterize energy density with ellipse

Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$


2. Around almond shape are *fluctuations* Triangular Shape $ightarrow v_3$ Alver, Roland, 2010

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

3. Hot-spots give *correlated* higher harmonics

$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

Different harmonics depend differently on hot-spot size, damped differently by viscosity, and depend differently on system size, momentum. Experimental data on magnitude and correlations of higher harmonics can vastly overconstrain hydrodynamic predictions for QGP, and hence determination of η/s . Maybe even $\eta/s(T)$. A flood of data in 2011 and 2012.

1. Characterize energy density with ellipse

Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

2. Around almond shape are *fluctuations* Triangular Shape $ightarrow v_3$ Alver, Roland, 2010

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

3. Hot-spots give *correlated* higher harmonics

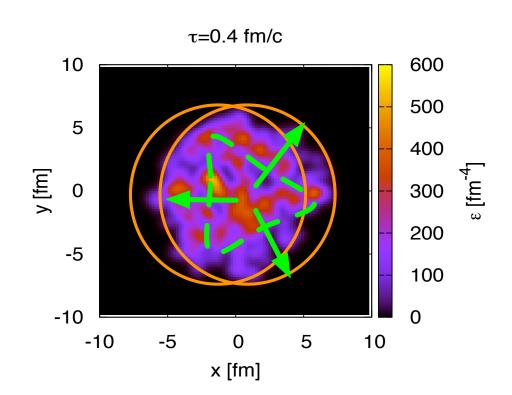
$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

Different harmonics depend differently on hot-spot size, damped differently by viscosity, and depend differently on system size, momentum. Experimental data on magnitude and correlations of higher harmonics can vastly overconstrain hydrodynamic predictions for QGP, and hence determination of η/s . Maybe even $\eta/s(T)$. A flood of data in 2011 and 2012.

1. Characterize energy density with ellipse

Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$


2. Around almond shape are *fluctuations* Triangular Shape $ightarrow v_3$ Alver, Roland, 2010

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

3. Hot-spots give *correlated* higher harmonics

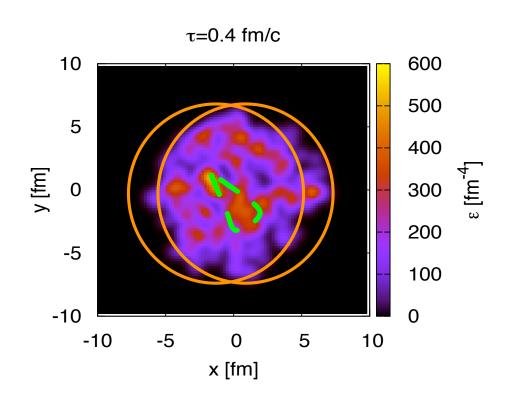
$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

Different harmonics depend differently on hot-spot size, damped differently by viscosity, and depend differently on system size, momentum. Experimental data on magnitude and correlations of higher harmonics can vastly overconstrain hydrodynamic predictions for QGP, and hence determination of η/s . Maybe even $\eta/s(T)$. A flood of data in 2011 and 2012.

1. Characterize energy density with ellipse

Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$


2. Around almond shape are *fluctuations* Triangular Shape $ightarrow v_3$ Alver, Roland, 2010

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$

3. Hot-spots give *correlated* higher harmonics

$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

Different harmonics depend differently on hot-spot size, damped differently by viscosity, and depend differently on system size, momentum. Experimental data on magnitude and correlations of higher harmonics can vastly overconstrain hydrodynamic predictions for QGP, and hence determination of η/s . Maybe even $\eta/s(T)$. A flood of data in 2011 and 2012.

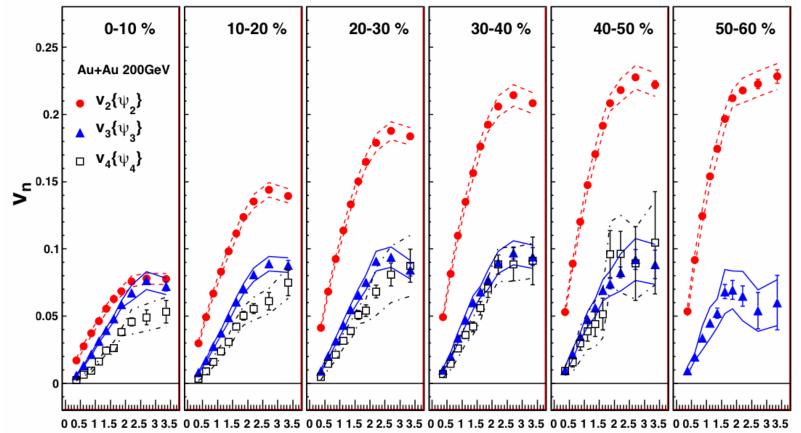
1. Characterize energy density with ellipse

Elliptic Shape gives elliptic flow

$$v_2 = \langle \cos 2\phi_{\mathbf{p}} \rangle$$

2. Around almond shape are *fluctuations* Triangular Shape $ightarrow v_3$ Alver, Roland, 2010

$$v_3 = \langle \cos 3(\phi_{\mathbf{p}} - \Psi_3) \rangle$$


3. Hot-spots give *correlated* higher harmonics

$$v_n = \langle \cos n(\phi_{\mathbf{p}} - \Psi_n) \rangle$$

Different harmonics depend differently on hot-spot size, damped differently by viscosity, and depend differently on system size, momentum. Experimental data on magnitude and correlations of higher harmonics can vastly overconstrain hydrodynamic predictions for QGP, and hence determination of η/s . Maybe even $\eta/s(T)$. A flood of data in 2011 and 2012.

$v_2\{\Phi_2\}$, $v_3\{\Phi_3\}$, $v_4\{\Phi_4\}$ at 200GeV Au+Au

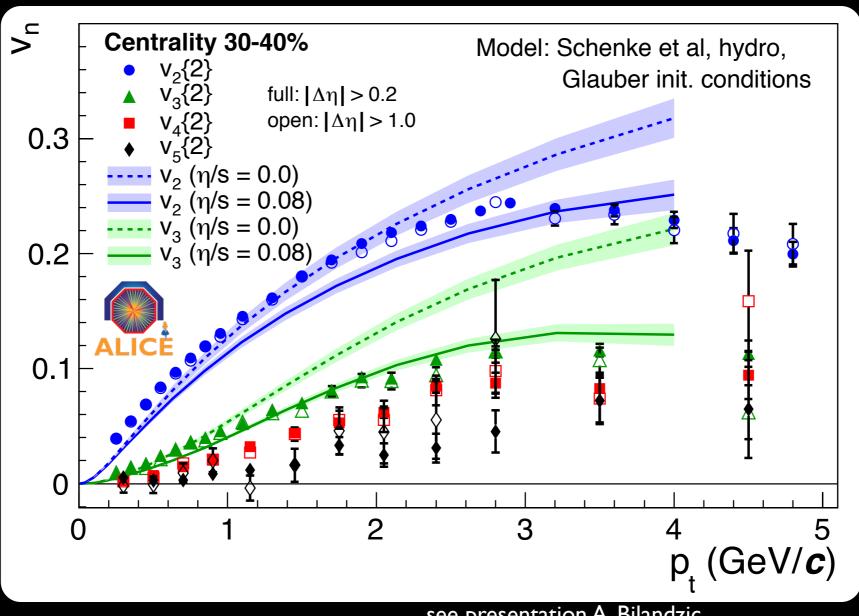
arXiv:1105.3928

p_T [GeV/c]

(1) v_3 is comparable to v_2 at 0~10%

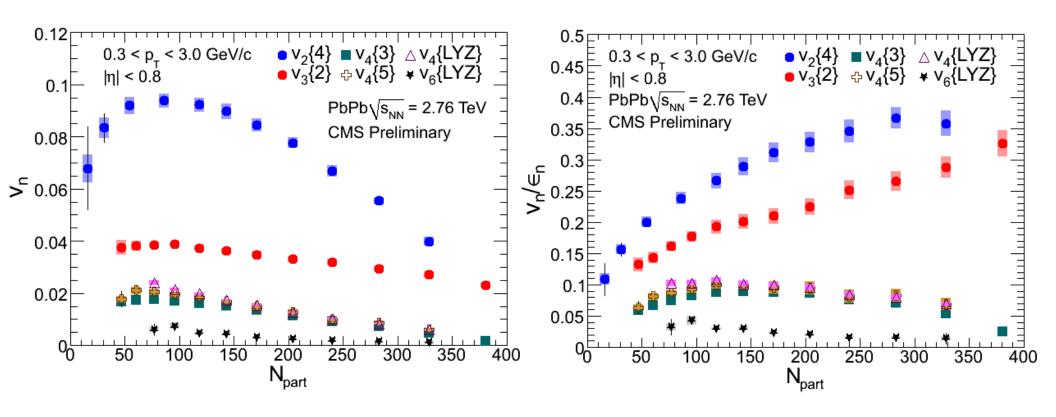
(2) weak centrality dependence on v₃

(3) $V_4\{\Phi_4\} \sim 2 \times V_4\{\Phi_2\}$


charged particle v_n : $|\eta|$ <0.35 reaction plane Φ_n : $|\eta|$ =1.0~2.8

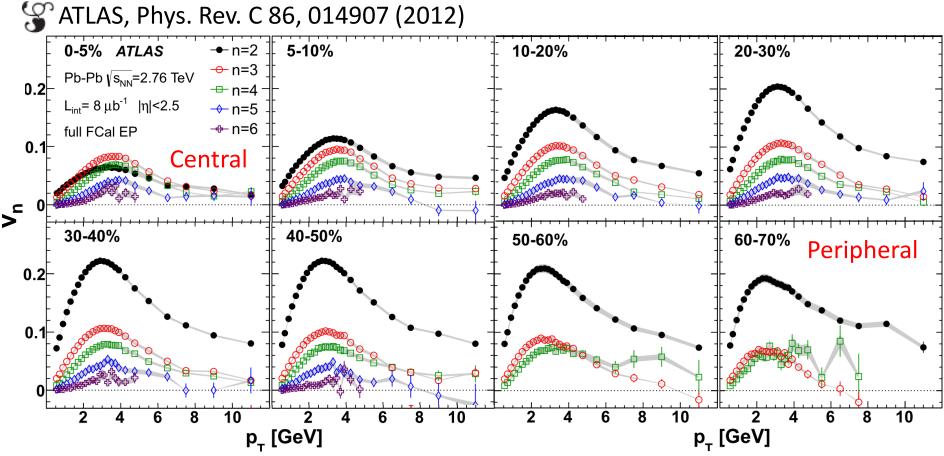
All of these are consistent with initial fluctuation.

Other Harmonics


ALICE Collaboration, arXiv:1105.3865

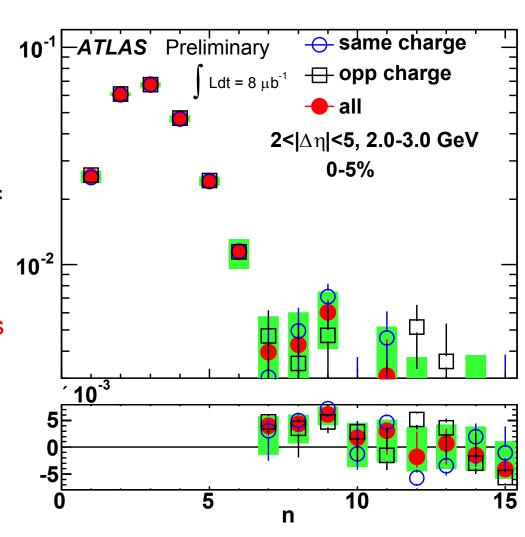
see presentation A. Bilandzic

The overall dependence of v_2 and v_3 is described However there is no simultaneous description with a single η /s of v_2 and v_3 for Glauber initial conditions


The full harmonic spectrum

- v_n vs N_{part} shows different trends:
 - even harmonics have similar centrality dependence:
 - decreasing \rightarrow 0 with increasing N_{part}
 - v₃ has weak centrality dependence, finite for central collisions

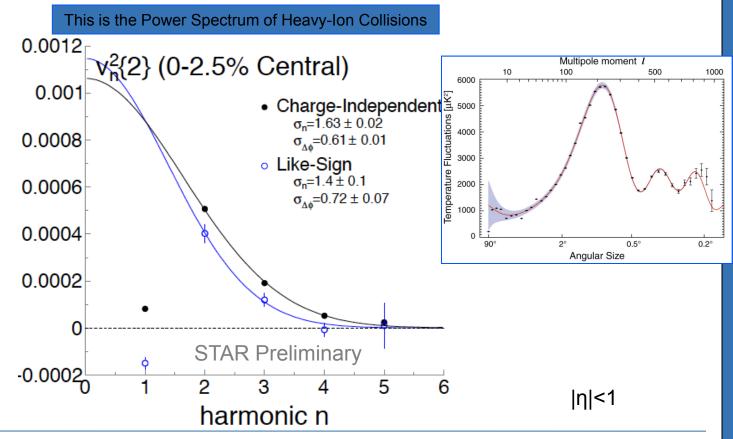
Higher Order Flow Harmonics (v₂-v₆)


- Significant $v_2 v_6$ are measured in broad range of p_T , η and centrality
- p_⊤ dependence for all measured amplitudes show similar trend
- Stronger centrality dependence of v₂ than higher order harmonics
- In most central collisions (0-5%): v_3 , v_4 can be larger than v_2

Power spectra in azimuth angle

• v_n vs n for n=1-15 in 0-5% most central collisions and 2.0-3.0 GeV

Significant v₂-v₆ signal, higher order consistent with 0


Damping of higher order harmonics provides important constraint on η /s

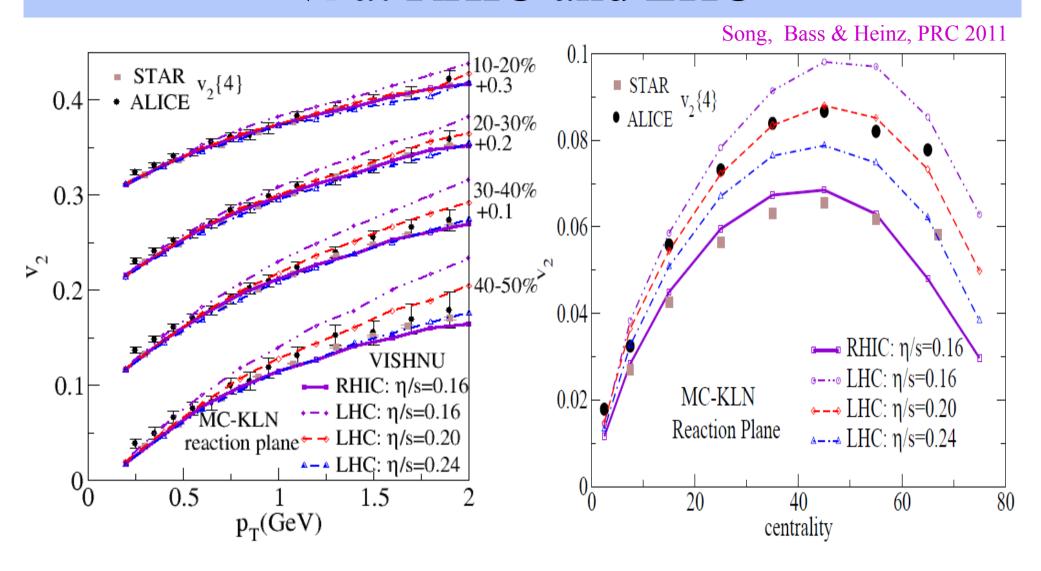
The error on $v_n = \sqrt{v_{n,n}}$ is highly non-Gaussian

v_n^2 {2} vs n for 0-2.5% Central

 v_n {4} is zero for 0-2.5% central: look at v_2 {2} vs n to extract the power spectrum in nearly symmetric collisions

Fit by a Gaussian except for n=1. The width can be related to length scales like P. Staig and E. Shuryak, arXiv:1008.3139 [nucl-th] mean free path, acoustic horizon, $1/(2\pi T)$...

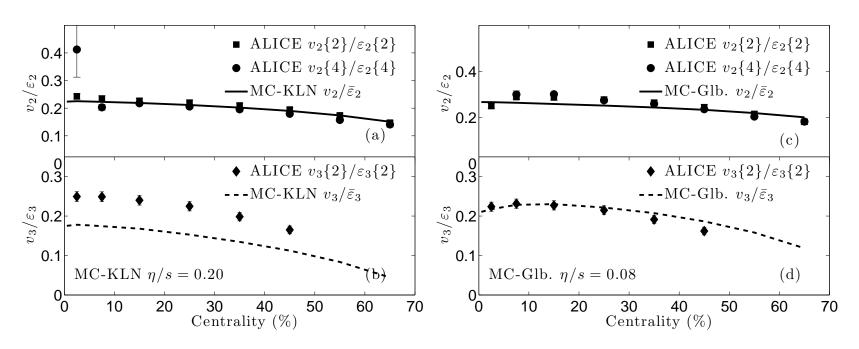
A. Mocsy, P. S., arXiv:1008.3381 [hep-ph] A. Adare [PHENIX], arXiv:1105:3928


Integrates all Δη within acceptance: we can look more differentially to assess non-flow

Early Responses to Flood of Data

- v_2 alone indicates η/s roughly same at LHC as at RHIC.
- Full-scale relativistic viscous hydrodynamics calculations, with systematic exploration of initial-state fluctuations, and treatment of the late-stage hadron gas are being done by many groups, but will take a little time. Early, partial, analyses indicate that flood of data on $v_{3...6}$ will tighten the determination of η/s significantly. Eg...
- Measurements of v_3 and v_2 together allow separation of effects of η/s from effects of different shapes of the initial density profile.
- The higher v_n 's are sensitive to the size of the density fluctuations, and to η/s .
- Systematic, state-of-the-art, analyses are coming, but take longer. The shape of things to come ...

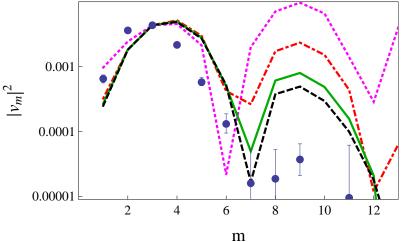
V₂ at RHIC and LHC

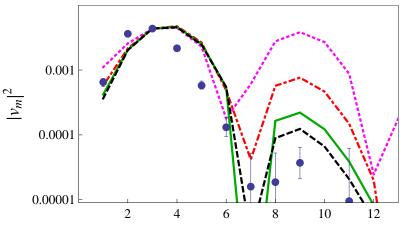


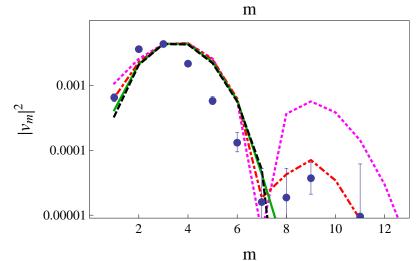
The average QGP viscosity is roughly the same at RHIC and LHC

Early Responses to Flood of Data

- v_2 alone indicates η/s roughly same at LHC as at RHIC.
- Full-scale relativistic viscous hydrodynamics calculations, with systematic exploration of initial-state fluctuations, and treatment of the late-stage hadron gas are being done by many groups, but will take a little time. Early, partial, analyses indicate that flood of data on $v_{3...6}$ will tighten the determination of η/s significantly. Eg...
- Measurements of v_3 and v_2 together allow separation of effects of η/s from effects of different shapes of the initial density profile.
- The higher v_n 's are sensitive to the size of the density fluctuations, and to η/s .
- Systematic, state-of-the-art, analyses are coming, but take longer. The shape of things to come ...


Using v_3 and v_2 to extract η/s




An example calculation showing LHC data on v_2 alone can be fit well with $\eta/s=.08$ and .20, by starting with different initial density profiles, both reasonable. But, v_3 breaks the "degeneracy". Qiu, Shen, Heinz 1110.3033

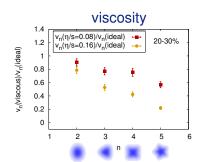
Early Responses to Flood of Data

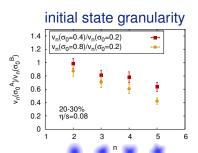
- v_2 alone indicates η/s roughly same at LHC as at RHIC.
- Full-scale relativistic viscous hydrodynamics calculations, with systematic exploration of initial-state fluctuations, and treatment of the late-stage hadron gas are being done by many groups, but will take a little time. Early, partial, analyses indicate that flood of data on $v_{3...6}$ will tighten the determination of η/s significantly. Eg...
- Measurements of v_3 and v_2 together allow separation of effects of η/s from effects of different shapes of the initial density profile.
- The higher v_n 's are sensitive to the size of the density fluctuations, and to η/s .
- Systematic, state-of-the-art, analyses are coming, but take longer. The shape of things to come ...

- Analytic calculation of "shape" of v_n 's in a simplified geometry with small fluctuations of a single size.
- Panels, top to bottom, are for fluctuations with size 0.4, 0.7 and 1 fm.
- Colors show varying η/s , with magenta, red, green, black being η/s =0, 0.08, 0.134, 0.16.
- Evidently, higher harmonics will constrain size of fluctuations and η/s , which controls their damping.

Staig, Shuryak, 1105.0676

Flow analysis B. Schenke, S. Jeon, C. Gale, Phys. Rev. C85, 024901 (2012)



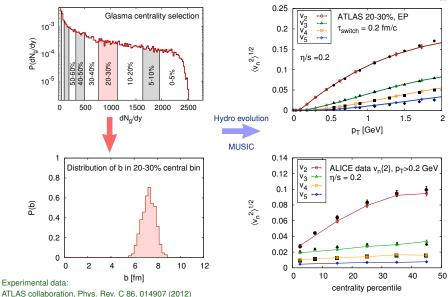

After Cooper-Frye freeze-out and resonance decays in each event we compute

$$v_n = \langle \cos[n(\phi - \psi_n)] \rangle$$

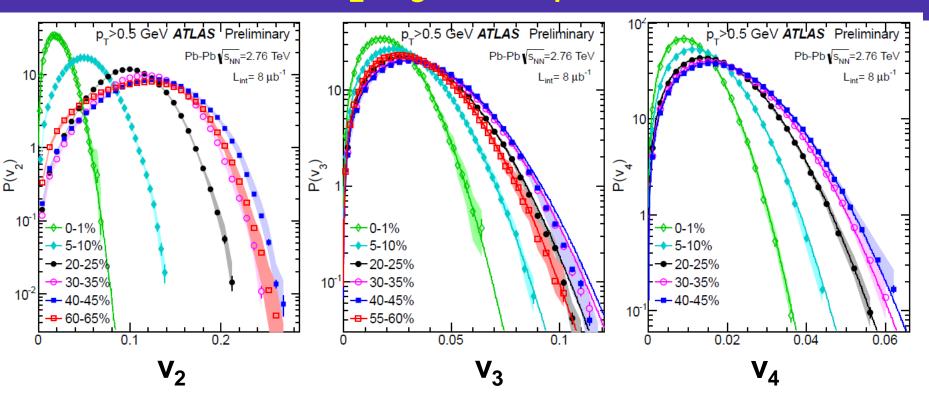
with the event-plane angle $\psi_n = \frac{1}{n} \arctan \frac{\langle \sin(n\phi) \rangle}{\langle \cos(n\phi) \rangle}$

Sensitivity of event averaged v_n on

Sensitivity to viscosity and initial state structure increases with n


Early Responses to Flood of Data

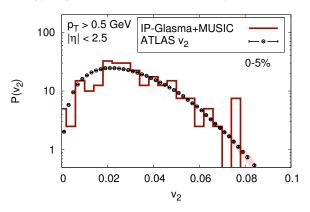
- v_2 alone indicates η/s roughly same at LHC as at RHIC.
- Full-scale relativistic viscous hydrodynamics calculations, with systematic exploration of initial-state fluctuations, and treatment of the late-stage hadron gas are being done by many groups, but will take a little time. Early, partial, analyses indicate that flood of data on $v_{3...6}$ will tighten the determination of η/s significantly. Eg...
- Measurements of v_3 and v_2 together allow separation of effects of η/s from effects of different shapes of the initial density profile.
- The higher v_n 's are sensitive to the size of the density fluctuations, and to η/s .
- Systematic, state-of-the-art, analyses are coming, but take longer. The shape of things to come ...


Centrality selection and flow

ALICE collaboration, Phys. Rev. Lett. 107, 032301 (2011)

Unfolded v_2 , v_3 and v_4 Distributions

- v_n distributions normalized to unity for n = 2,3 and 4
- Lines represent radial projections of 2D Gaussians, rescaled to <v_n>
 - for v₂ only in the 0-2% of most central collisions
 - for v₃ and v₄ over all centralities

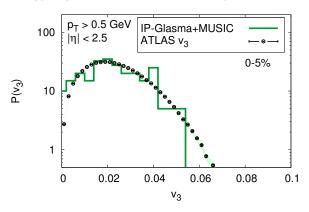

Event-by-event distributions of v_n

comparing to all new ATLAS data:

https://atlas.web.cerp.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-114/

see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.

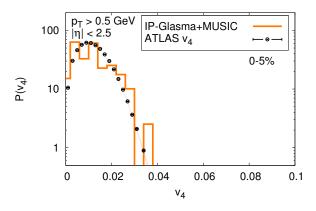

Event-by-event distributions of v_n

comparing to all new ATLAS data:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-114/

see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.


Event-by-event distributions of v_n

comparing to all new ATLAS data:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-114/

see talk by Jiangyong Jia in Session 4A, today, 11:20 am

Preliminary results: Statistics to be improved.

QGP cf CMB

- In cosmology, initial-state quantum fluctuations, processed by hydrodynamics, appear in data as c_ℓ 's. From the c_ℓ 's, learn about initial fluctuations, and about the "fluid" eg its baryon content.
- In heavy ion collisions, initial state quantum fluctuations, processed by hydrodynamics, appear in data as v_n 's. From v_n 's, learn about initial fluctuations, and about the QGP eg its η/s , ultimately its $\eta/s(T)$ and ζ/s .
- Cosmologists have a huge advantage in resolution: c_ℓ 's up to $\ell \sim$ thousands. But, they have only one "event"!
- Heavy ion collisions only up to v_6 at present. But they have billions of events. And, they can do controlled variations of the initial conditions, to understand systematics...

New Experiments

- In Au-Au collisions, varying impact parameter gives you one slice through the parameter space of shape and density. New experiments will bring us closer to independent control of shape and density.
- Uranium-Uranium collisions at RHIC. Uranium nuclei are prolate ellipsoids. When they collide "side-on-side", you get elliptic flow at zero impact parameter, ie at higher energy density.
- Copper-Gold collisions at RHIC. Littler sphere on bigger sphere. At nonzero impact parameter, get triangularity, and v_3 , even in the mean. Not just from fluctuations.
- Both will provide new ways to understand systematics and disentangle effects of η/s .
- First runs of each a few months ago.

Why care about the value of η/s ?

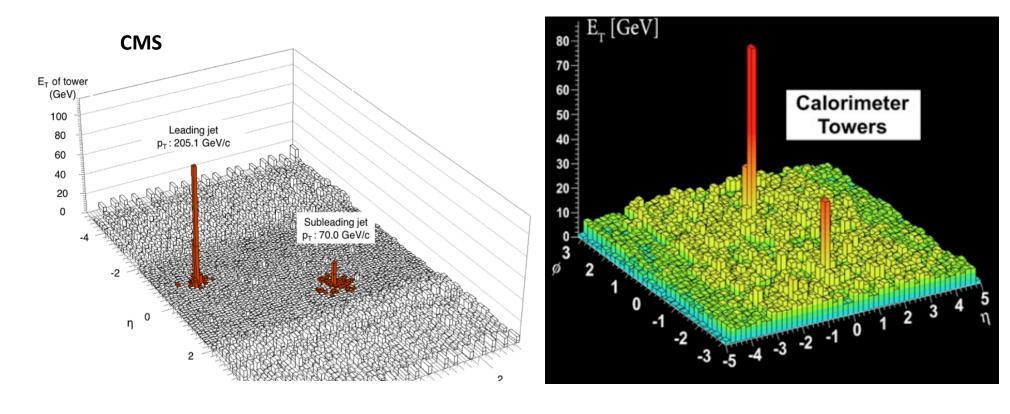
- Here is a theorist's answer...
- Any gauge theory with a holographic dual has $\eta/s=1/4\pi$ in the large- N_c , strong coupling, limit. In that limit, the dual is a classical gravitational theory and η/s is related to the absorption cross section for stuff falling into a black hole. If QCD has a dual, since $N_c=3$ it must be a string theory. Determining $(\eta/s)-(1/4\pi)$ would then be telling us about string corrections to black hole physics, in whatever the dual theory is.
- For fun, quantum corrections in dual of $\mathcal{N}=4$ SYM give:

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + \frac{15\zeta(3)}{(g^2 N_c)^{3/2}} + \frac{5}{16} \frac{(g^2 N_c)^{1/2}}{N_c^2} + \dots \right)$$
 Myers, Paulos, Sinha

with $1/N_c^2$ and N_f/N_c corrections yet unknown. Plug in $N_c=3$ and $\alpha=1/3$, i.e. $g^2N_c=12.6$, and get $\eta/s\sim 1.73/4\pi$. And, $s/s_{SB}\sim 0.81$, near QCD result at $T\sim 2-3T_c$.

A more serious answer…

Beyond Quasiparticles

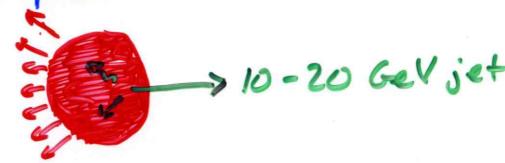

- QGP at RHIC & LHC, unitary Fermi "gas", gauge theory plasmas with holographic descriptions are all strongly coupled fluids with no apparent quasiparticles.
- In QGP, with η/s as small as it is, there can be no 'transport peak', meaning no self-consistent description in terms of quark- and gluon-quasiparticles. [Q.p. description self consistent if $\tau_{\rm qp} \sim (5\eta/s)(1/T) \gg 1/T$.]
- Other "fluids" with no quasiparticle description include: the "strange metals" (including high- T_c superconductors above T_c); quantum spin liquids; matter at quantum critical points;...
- Emerging hints of how to look at matter in which quasiparticles have disappeared and quantum entanglement is enhanced: "many-body physics through a gravitational lens." Black hole descriptions of liquid QGP and strange metals are continuously related! But, this lens is at present still somewhat cloudy...

A Grand Challenge

- How can we clarify the understanding of fluids without quasiparticles, whose nature is a central mystery in so many areas of science?
- We have two big advantages: (i) direct experimental access to the fluid of interest without extraneous degrees of freedom; (ii) weakly-coupled quark and gluon quasiparticles at short distances.
- We can quantify the properties and dynamics of Liquid QGP at it's natural length scales, where it has no quasiparticles.
- Can we probe, quantify and understand Liquid QGP at short distance scales, where it is made of quark and gluon quasiparticles? See how the strongly coupled fluid emerges from well-understood quasiparticles at short distances.
- The LHC and newly upgraded RHIC offer new probes and open new frontiers.

Jet Quenching at the LHC

ATLAS


A very large effect at the LHC, immediately apparent in single events. 200 GeV jet back-to-back with a 70 GeV jet. Strongly coupled plasma. Strong jet quenching not a surprise...

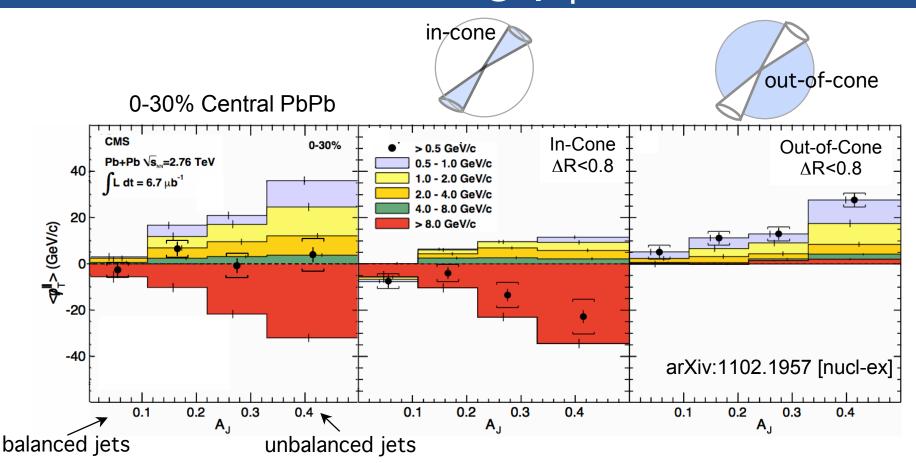
Jet Quenching @ LHC

- Jet quenching apparent at the LHC, eg in events with, say, 205 GeV jet back-to-back with 70 GeV jet. Strongly coupled plasma, so strong jet quenching not a surprise...
- But, the 70 GeV jet looks almost like a 70 GeV jet in pp collisions. Almost same fragmentation function; almost same angular distribution. The "missing" energy is not in the form of a spray of softer particles in and around the jet.
- Also, 70 GeV jet seems to be back-to-back with the 205 GeV jet; no sign of transverse kick.
- The "missing" energy is in the form of many ~ 1 GeV particles at large angle to the jet direction.
- Interestingly, STAR, PHENIX and ALICE may see evidence of spray of softer particles around lower energy jets.

JET QUENCHING

Further evidence that QGP@RHIC is strongly coupled.

E (I-x) E

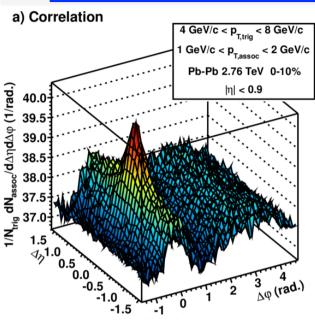

Lin Link

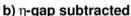
In Link Radiative energy 1055 dominates in high E limit. (E>> k_->>T) If 60 (RHIC? LHC?), energy loss sensitive to medium through one parameter q, kt picked up by radicated gluon per distance L travelled. Spectrum of radiated gluons: wdI ~ a q L Energy loss DE~ x q. L2 SOF WY 9L2

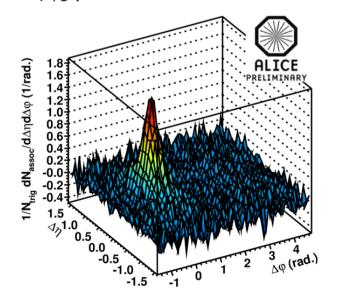
Jet Quenching @ LHC

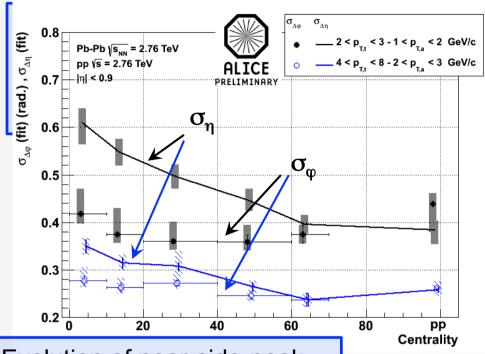
- Jet quenching apparent at the LHC, eg in events with, say, 205 GeV jet back-to-back with 70 GeV jet. Strongly coupled plasma, so strong jet quenching not a surprise...
- But, the 70 GeV jet looks almost like a 70 GeV jet in pp collisions. Almost same fragmentation function; almost same angular distribution. The "missing" energy is not in the form of a spray of softer particles in and around the jet.
- Also, 70 GeV jet seems to be back-to-back with the 205 GeV jet; no sign of transverse kick.
- The "missing" energy is in the form of many ~ 1 GeV particles at large angle to the jet direction.
- Interestingly, STAR, PHENIX and ALICE may see evidence of spray of softer particles around lower energy jets.

Missing-p_T||

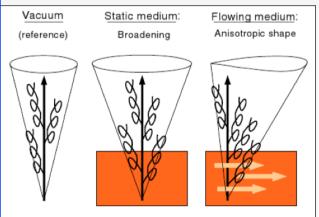

Near-side (jet-like) structure




Talks by


F.Krizek

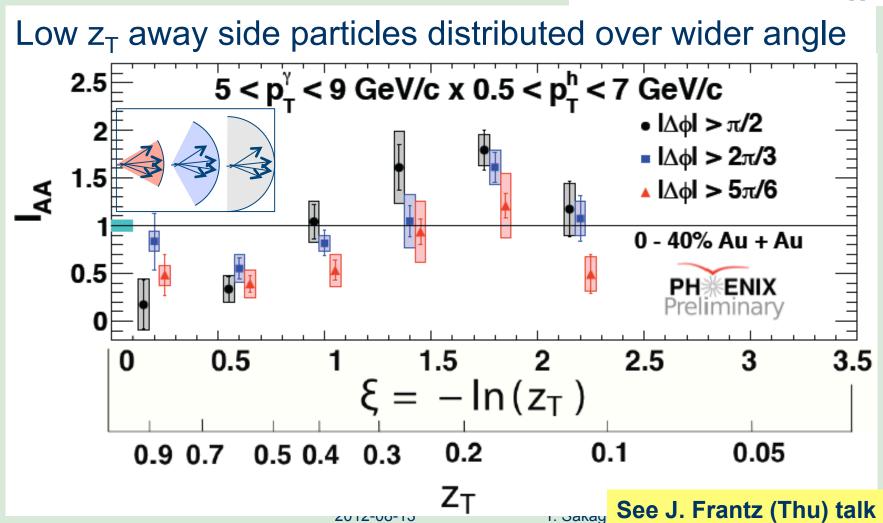
A.M.Adare



Evolution of near-side-peak σ_{η} and σ_{ϕ} with centrality: Strong σ_{η} increase for central collisions

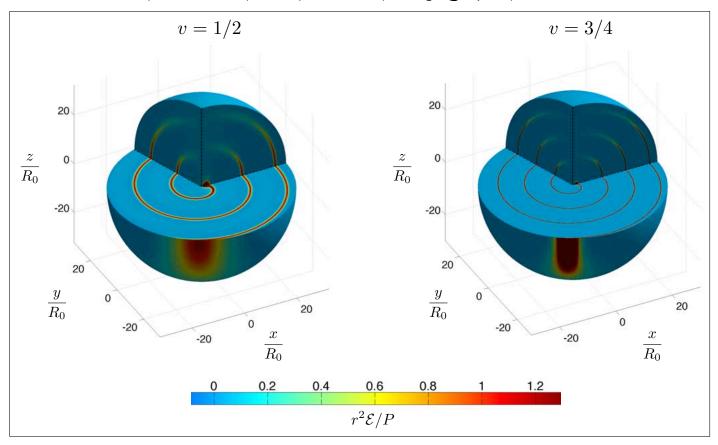
Interestingly: AMPT describes the data very well

Influence of flowing medium?

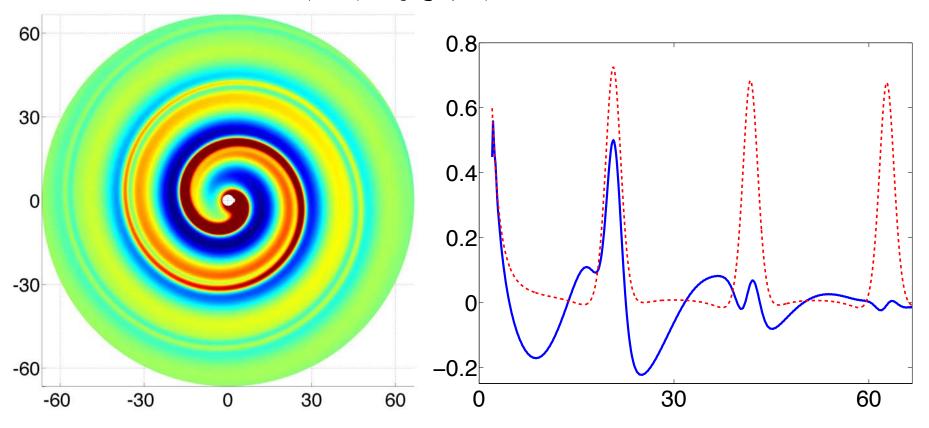

N.Armesto et al., PRL 93, 242301

25

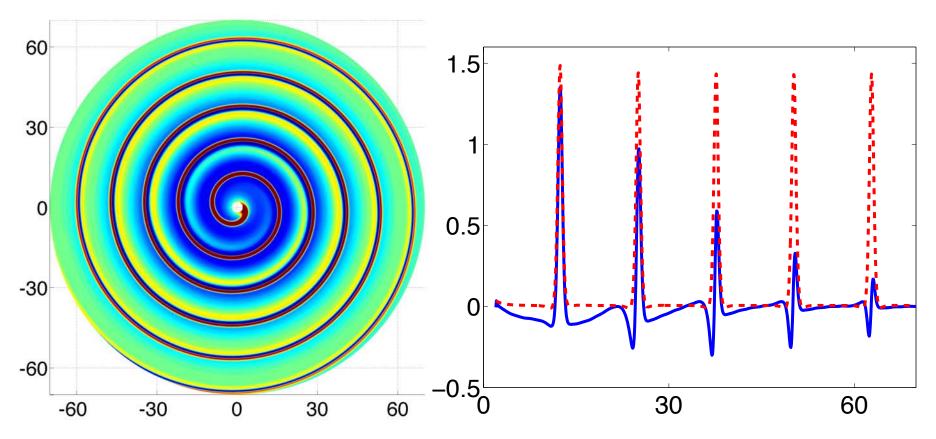
γ-h correlation in Au+Au


$$I_{AA} \equiv \frac{(1/N_{trig}dN/d\xi)_{AA}}{(1/N_{trig}dN/d\xi)_{pp}}$$

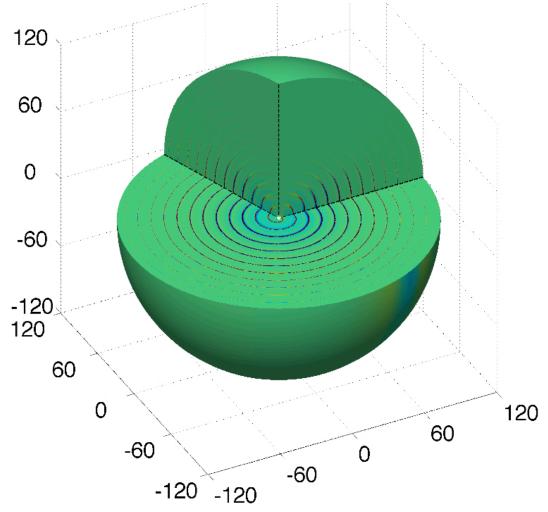
- As if an initially-200-GeV parton/jet in an LHC collision just heats the plasma it passes through, losing energy without spreading in angle. Are even 200 GeV partons not "seeing" the quasiparticles at short distances?
- One line of theoretical response: more sophisticated analyses of conventional weak-coupling picture of jet quenching. Advancing from parton energy loss and leading hadrons to modification of parton showers and jets.
- We also need a strongly coupled approach to jet quenching, even if just as a foil with which to develop new intuition.
- Problem: jet production is a weakly-coupled phenomenon. There is no way to make jets in the strongly coupled theories with gravity duals.
- But we can make a beam of gluons...


Synchrotron Radiation in Strongly Coupled Gauge Theories

Athanasiou, Chesler, Liu, Nickel, Rajagopal; arXiv:1001.3880


Fully quantum mechanical calculation of gluon radiation from a rotating quark in a strongly coupled large N_c non abelian gauge theory, done via gauge/gravity duality. "Lighthouse beam" of synchrotron radiation. Surprisingly similar to classical electrodynamics. Now, shine this beam through strongly coupled plasma...

Chesler, Ho, Rajagopal, arXiv:1111.1691


Quark in circular motion (v = 0.3; $R\pi T = 0.15$) makes a beam that is attenuated as it shines through the strongly coupled plasma, leaving a sound wave behind.

Chesler, Ho, Rajagopal, arXiv:1111.1691

Quark in circular motion (v = 0.5; $R\pi T = 0.15$) makes a narrower beam that is attenuated more slowly as it shines through the strongly coupled plasma, leaving a sound wave farther behind.

An even narrower beam travels farther still, gets attenuated without spreading in angle.

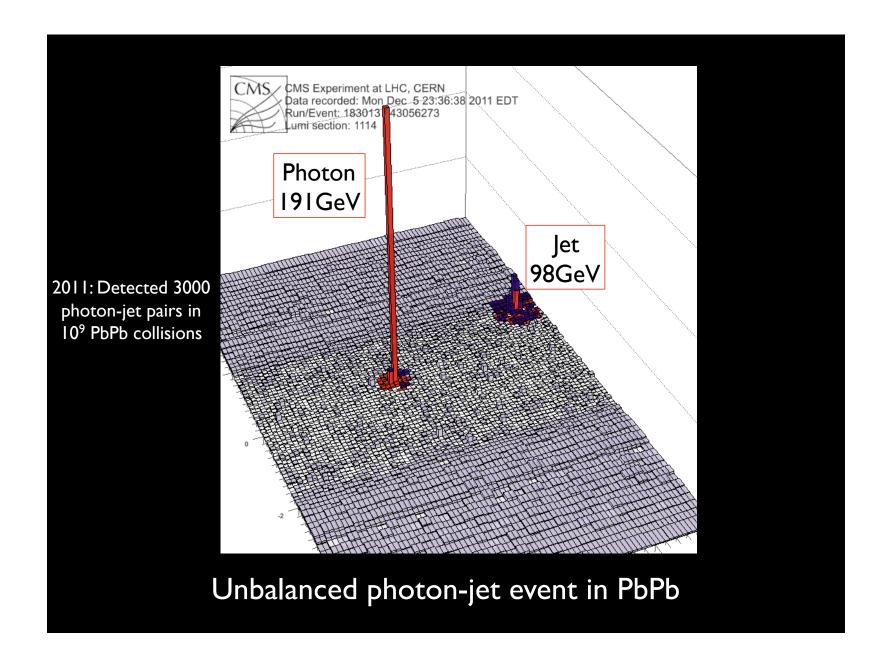
Chesler, Ho, Rajagopal, arXiv:1111.1691

- A beam of gluons with wave vector $q \gg \pi T$ shines through the strongly coupled plasma at close to the speed of light, and is attenuated over a distance $\sim q^{1/3}(\pi T)^{-4/3}$.
- Beam shows no tendency to spread in angle, or shift toward longer wavelengths, even as it is completely attenuated. Like jet quenching at LHC?
- Beam sheds a trailing sound wave with wave vector $\sim \pi T$. A beam of higher q gluons travels far enough that it leaves the sound far behind; sound presumably thermalizes. (LHC?) A beam of not-so-high q gluons does not get far ahead of its trailing sound wave over its whole attenuation length. (RHIC?)
- Other approaches to jet quenching in a strongly coupled plasma yield qualitatively similar conclusions.

Shining Gluons through Liquid QGP

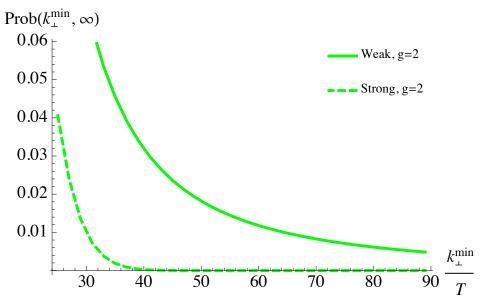
- A beam of gluons loses its energy by heating the strongly coupled plasma it propagates through, not by spreading in angle, and not by softening its "fragmentation function".
 At least reminiscent of jet quenching at the LHC.
- Differing jet-QGP interaction in RHIC and LHC regimes? Maybe. Or, maybe its just that the jets that make it out of a RHIC collision have not travelled as great a distance. I.e. at RHIC if a jet makes it out it was produced close enough to the edge of the droplet of liquid QGP that the sound waves it shed have not had time to thermalize and have not been left far behind, while at the LHC we see jets produced deeper inside, whose shed sound waves have largely thermalized.

A Hybrid Weak+Strong Coupling Approach to Jet Quenching?


- Although quenching a gluon beam is instructive at a qualitative level, seems quite unlikely that the high-momentum "core" of a quenched LHC jet can be described quantitatively in any strong coupling approach. (Precisely because so similar to jets in vacuum.)
- We know that the medium itself is a strongly coupled liquid, with no apparent weakly coupled description. And, the energy the jet loses seems to quickly become one with the medium.
- A hybrid approach may be worthwhile. Eg think of each parton in a parton shower as feeling a "drag force", losing energy to "friction". (Drag force for a heavy quark in strongly coupled plasma is known.)
- A good sabbatical project.

How to see the quasiparticles??

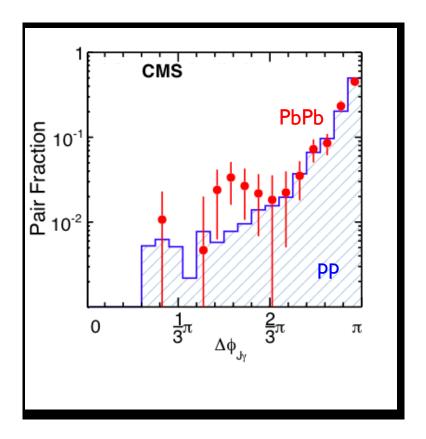
- We know that at a short enough lengthscale, a quasiparticulate picture of the QGP must be valid, even though on its natural lengthscales QGP is a strongly coupled fluid.
- Long-term challenge: understand how liquid QGP emerges from short-distance quark and gluon quasiparticles.
- First things first: how can we see the quasiparticles?
- How did Rutherford find hard, apparently pointlike, nuclei in atoms — which he thought were droplets of plum pudding? How did Friedman, Kendall and Taylor find hard, apparently pointlike, quarks inside a proton — which with some poetic license we can think of as the smallest possible droplet of liquid QGP? Answer: large-angle scattering was not as rare as it would have been if atom/proton were liquid-like on all length scales!
- Look for rare large-angle scattering off liquid QGP.


How to see the quasiparticles?

- Gamma-jet events: Gamma tells you initial direction of quark. Measure deflection angle. Like Rutherford!
- Calculate $P(k_{\perp})$, the probability distribution for the k_{\perp} that a parton with energy $E \to \infty$ picks up upon travelling a distance L through the medium:
 - $P(k_{\perp}) \propto \exp(-\#k_{\perp}^2/(T^3L))$ in strongly coupled plasma. D'Eramo, Liu, Rajagopal, arXiv:1006.1367
 - For a weakly coupled plasma made of point scatterers, $P(k_{\perp}) \propto 1/k_{\perp}^4$ at large k_{\perp} . In the strongly coupled plasma of an asymptotically free gauge theory, this must win at large enough k_{\perp} . D'Eramo, Lekaveckas, Liu, Rajagopal, in progress
- Expect Gaussian at low k_{\perp} , with power-law tail at high k_{\perp} . Large deflections rare, but not as rare as if the liquid were a liquid on all scales. They indicate point-like scatterers.

How to see the quasiparticles?

- Gamma-jet events: Gamma tells you initial direction of quark. Measure deflection angle. Like Rutherford!
- Calculate $P(k_{\perp})$, the probability distribution for the k_{\perp} that a parton with energy $E \to \infty$ picks up upon travelling a distance L through the medium:
 - $P(k_{\perp}) \propto \exp(-\#k_{\perp}^2/(T^3L))$ in strongly coupled plasma. D'Eramo, Liu, Rajagopal, arXiv:1006.1367
 - For a weakly coupled plasma made of point scatterers, $P(k_{\perp}) \propto 1/k_{\perp}^4$ at large k_{\perp} . In the strongly coupled plasma of an asymptotically free gauge theory, this must win at large enough k_{\perp} . D'Eramo, Lekaveckas, Liu, Rajagopal, in progress
- Expect Gaussian at low k_{\perp} , with power-law tail at high k_{\perp} . Large deflections rare, but not as rare as if the liquid were a liquid on all scales. They indicate point-like scatterers.


D'Eramo, Lekaveckas, Liu, Rajagopal, in progress

- Probability that a parton that travels L = 7.5/T through the medium picks up $k_{\perp} > k_{\perp min}$, for:
 - Weakly coupled QCD plasma, in equilibrium, analyzed via SCET+HTL. With g=2, i.e. $\alpha_{\text{QCD}}=0.32$.
 - Strongly coupled $\mathcal{N}=4$ SYM plasma, in equilibrium, analyzed via holography. With g=2, i.e. λ_{t} Hooft = 12.
- Eg, for T=300 MeV, L=5 fm, a 60 GeV parton that picks up $70\,T$ of k_{\perp} scatters by 20° .

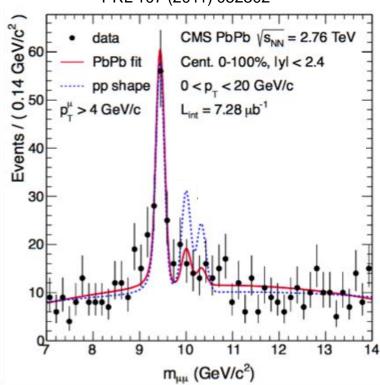
How to see the quasiparticles?

- Gamma-jet events: Gamma tells you initial direction of quark. Measure deflection angle. Like Rutherford!
- Calculate $P(k_{\perp})$, the probability distribution for the k_{\perp} that a parton with energy $E \to \infty$ picks up upon travelling a distance L through the medium:
 - $P(k_{\perp}) \propto \exp(-\#k_{\perp}^2/(T^3L))$ in strongly coupled plasma. D'Eramo, Liu, Rajagopal, arXiv:1006.1367
 - For a weakly coupled plasma made of point scatterers, $P(k_{\perp}) \propto 1/k_{\perp}^4$ at large k_{\perp} . In the strongly coupled plasma of an asymptotically free gauge theory, this must win at large enough k_{\perp} . D'Eramo, Lekaveckas, Liu, Rajagopal, in progress
- Expect Gaussian at low k_{\perp} , with power-law tail at high k_{\perp} . Large deflections rare, but not as rare as if the liquid were a liquid on all scales. They indicate point-like scatterers.

Measure the angle between jet and photon

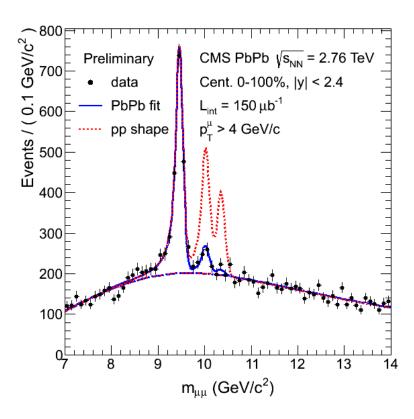
CMS, arXiv:1205.0206

Tantalizing, but need many more events before this can be a "QGP Rutherford Experiment". Something to look forward to circa 2015?


Heavy quarks? Upsilons? Photons?

- Photons carry information about a time-averaged temperature. With hydrodynamic analyses, they can tell you about temperature at some specified initial time.
- Heavy quarks are "tracers", diffusing in the plasma.
- If energetic heavy quarks interact with strongly coupled plasma like bullet plowing through water, b and c quark energy loss is same for quarks with same velocity. Quite different than weakly coupled expectations, where both v and M matter. Want to study b and c quark energy loss vs. momentum. Data on identified b and c quarks coming soon, at RHIC via upgrades being completed.
- Upsilons probe plasma on different length scales. 1S state is very small. 3S state is the size of an ordinary hadron. They "melt" (due to screening of $b-\bar{b}$ attraction) at different momentum-dependent temperatures. This story is just beginning. Stay tuned.

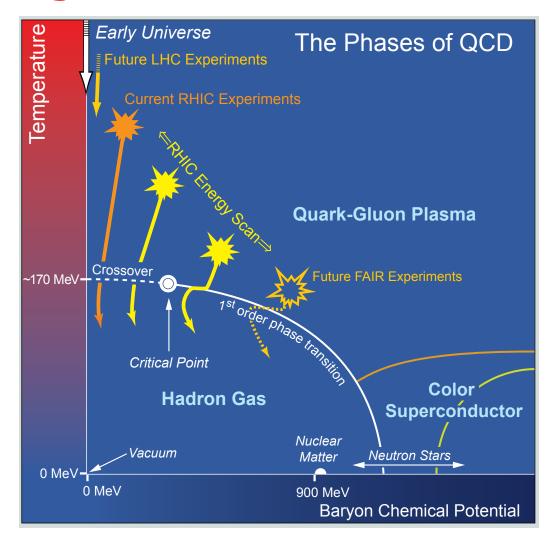
Sequential Upsilon suppression


2010 data

PRL 107 (2011) 052302

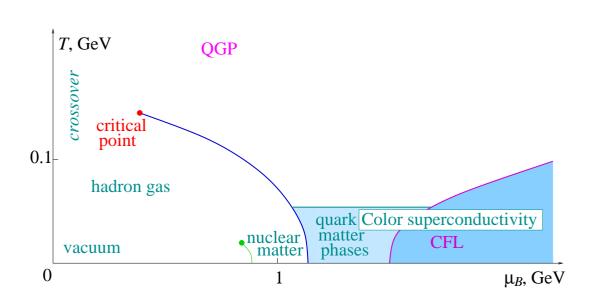
Indication of suppression of (Y(2S)+Y(3S)) relative to Y(1S)
→2.4σ significance

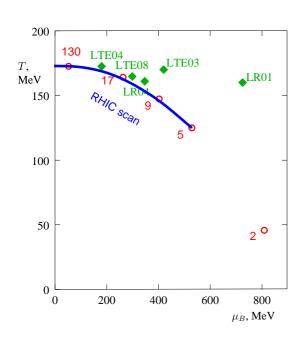
2011 data

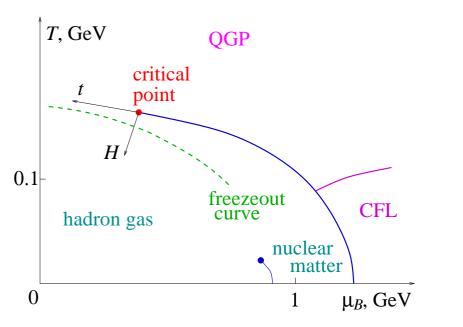


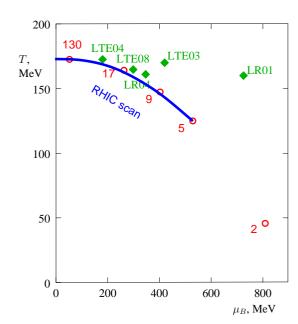
Observation of sequential suppression of Y family → Detailed studies

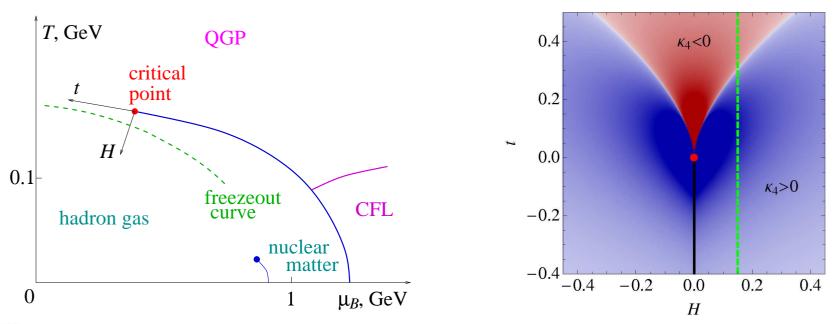
A Grand Challenge


- How can we clarify the understanding of fluids without quasiparticles, whose nature is a central mystery in so many areas of science?
- We are developing more, and better, ways of studying the properties and dynamics of Liquid QGP — "our" example of a fluid without quasiparticles.
- At some short length scale, a quasiparticulate picture of the QGP must be valid, even though on its natural length scales it is a strongly coupled fluid. It will be a challenge to see and understand *how* the liquid QGP emerges from short-distance quark and gluon quasiparticles.

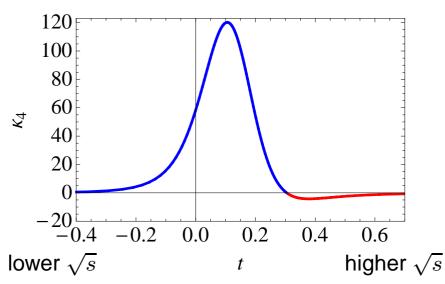

Seeking the QCD Critical Point

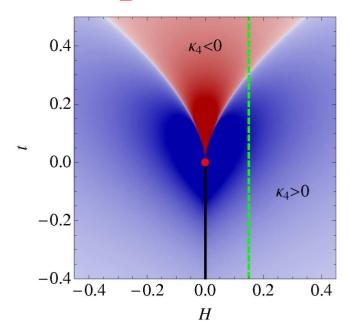

2007 NSAC Long Range Plan


Another grand challenge... Data from first phase of RHIC Energy Scan in 2011. And, a theory development...

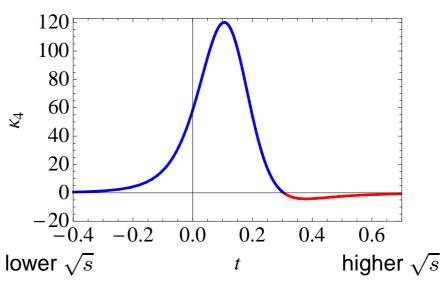


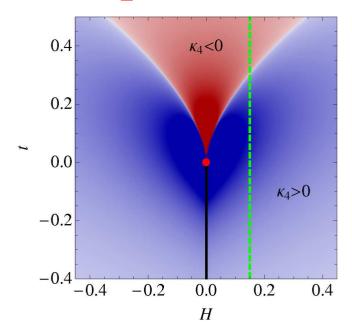
- lacktriangle Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?
- Near critical point fluctuations grow and become more non-Gaussian.
- **●** Challenge: develop measures most sensitive to the critical point and use them to locate the critical point by scanning in \sqrt{s} and therefore in $\mu_{\text{freezeout}}$.
- **•** Example: kurtosis (of the event-by-event distribution of the number of protons, pions or protons-antiprotons) depend strongly on the correlation length (ξ^7), which is non-trivial, non-monotonic function of μ and therefore \sqrt{s} . And, the prefactor in front of ξ^7 changes sign! Stephanov, 1104.1627



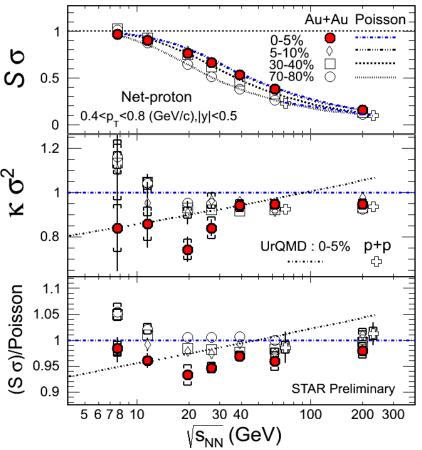

- ullet Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?
- Near critical point fluctuations grow and become more non-Gaussian.
- **●** Challenge: develop measures most sensitive to the critical point and use them to locate the critical point by scanning in \sqrt{s} and therefore in $\mu_{\text{freezeout}}$.
- **Proof** Example: kurtosis (of the event-by-event distribution of the number of protons, pions or protons-antiprotons) depend strongly on the correlation length (ξ^7), which is non-trivial, non-monotonic function of μ and therefore \sqrt{s} . And, the prefactor in front of ξ^7 changes sign! Stephanov, 1104.1627

- \blacksquare Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?
- Near critical point fluctuations grow and become more non-Gaussian.
- Challenge: develop measures most sensitive to the critical point and use them to locate the critical point by scanning in \sqrt{s} and therefore in $\mu_{\rm freezeout}$.
- **•** Example: kurtosis (of the event-by-event distribution of the number of protons, pions or protons-antiprotons) depend strongly on the correlation length (ξ^7) , which is non-trivial, non-monotonic function of μ and therefore \sqrt{s} . And, the prefactor in front of ξ^7 changes sign! Stephanov, 1104.1627

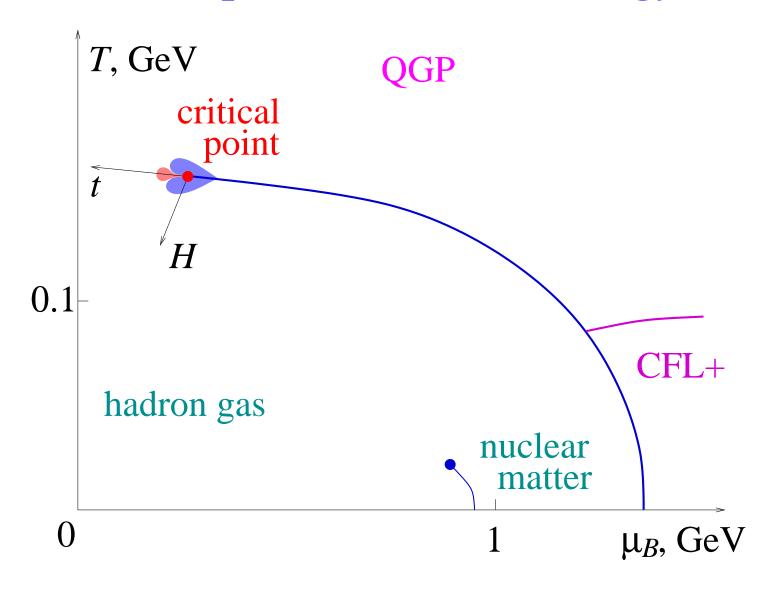

crit. contribution to Kurtosis (arb. units)

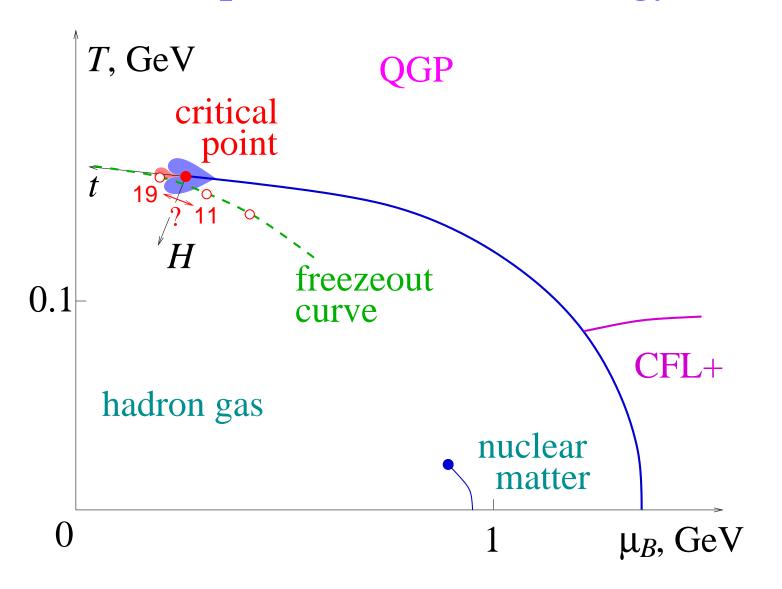


- ullet Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?
- Near critical point fluctuations grow and become more non-Gaussian.
- Challenge: develop measures most sensitive to the critical point and use them to locate the critical point by scanning in \sqrt{s} and therefore in $\mu_{\rm freezeout}$.
- **•** Example: kurtosis (of the event-by-event distribution of the number of protons, pions or protons-antiprotons) depend strongly on the correlation length (ξ^7) , which is non-trivial, non-monotonic function of μ and therefore \sqrt{s} . And, the prefactor in front of ξ^7 changes sign! Stephanov, 1104.1627


crit. contribution to Kurtosis (arb. units)

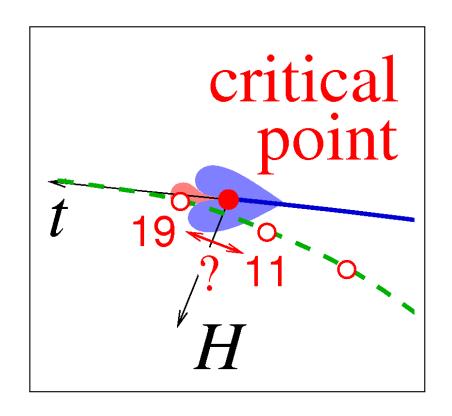
- ullet Models (and lattice) suggest the transition becomes 1st order at some μ_B .
- Can we observe the critical point in heavy ion collisions, and how?
- Near critical point fluctuations grow and become more non-Gaussian.
- **●** Challenge: develop measures most sensitive to the critical point and use them to locate the critical point by scanning in \sqrt{s} and therefore in $\mu_{\text{freezeout}}$.
- Once we find the μ (i.e. the \sqrt{s}) where the critical contribution to κ_4 is large enough e.g. the "blue peak" then there are then robust, parameter-independent, predictions for various ratios of the kurtosis and skewness of protons and pions. Athanasiou, Stephanov, Rajagopal 1006.4636.

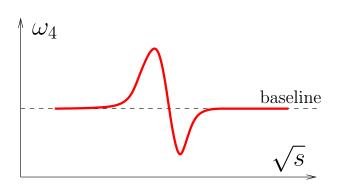

Early RHIC Energy Scan Data


STAR, QM2012

Very interesting to see data from 2013 run at $\sqrt{s}=15$ GeV. If negative kurtosis at $\sqrt{s}=19.6$ GeV is due to critical point, and if critical region is ~ 100 MeV wide in μ_B , then expect positive contribution to kurtosis at $\sqrt{s}=15$ GeV. Future: electron cooling $\to \times 10$ statistics at low \sqrt{s} .

Implications for the energy scan



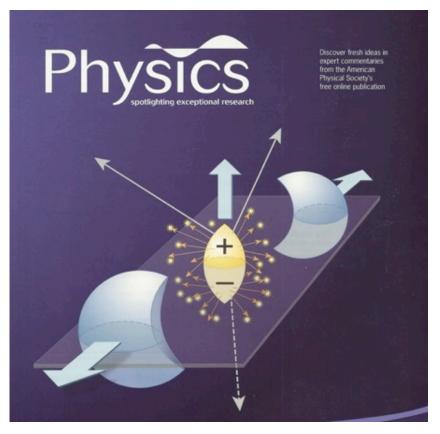

Implications for the energy scan

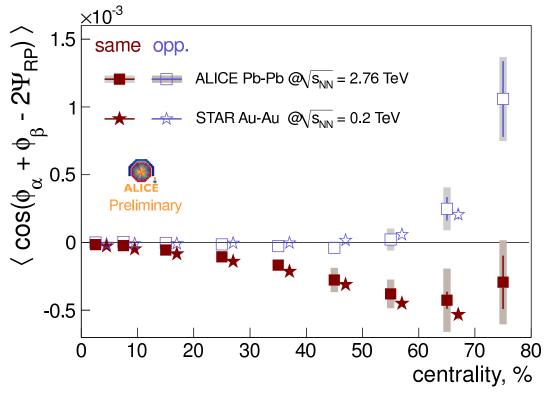
If the kurtosis stays significantly below Poisson value in 19 GeV data, the logical place to take a closer look is between 19 and 11 GeV.

Implications for the energy scan

If the kurtosis stays significantly below Poisson value in 19 GeV data, the logical place to take a closer look is between 19 and 11 GeV.

QCD Sphalerons + Anomaly $+\vec{B}$?

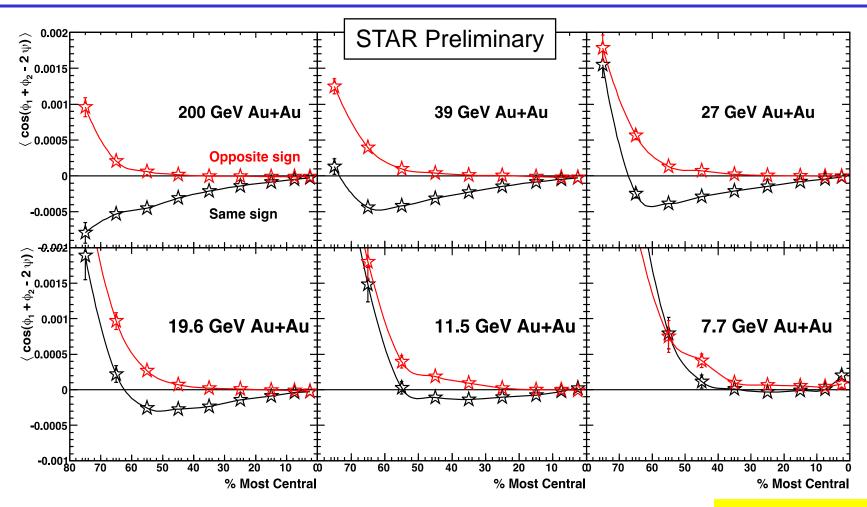

- In QGP, QCD sphalerons should be unsuppressed, with a rate per unit volume $\propto \mathrm{const}\,T^4$. Excess R quarks in one event. Excess L quarks in the next. [Both weak and strong coupling estimates suggest \sim few percent.]
- Chiral anomaly can be written


$$\vec{j}_V = \frac{N_c e}{2\pi^2} \,\mu_A \,\vec{B}$$

so, in the presence of a magnetic field, an excess of R quarks (ie $\mu_A > 0$) results in an electric current!

- Spectator nuclei create $B\sim 10^{18-19}$ gauss in top energy RHIC collisions with decent impact parameter. At LHC, larger B, but it lasts for a shorter time.
- So, Kharzeev et al predicted charge-separation, event-byevent parity violation.
- My a priori reaction, and that of many: reality will bite.

Searching for the Chiral Magnetic Effect


Does Reality Bite?

- A clear signal, first at STAR then ALICE, in an observable that *could* indicate event-by-event charge separation.
- BUT: this observable could instead indicate novel, but prosaic, hadron-gas physics. Tendency for opposite-sign hadrons to be near each other, plus v_2 , can "fake" this.
- So, turn off QGP, keep v_2 , and see whether the effect goes away... It does!
- So, turn off \vec{B} , keep v_2 [by colliding U-U, side-on-side] and see whether the effect goes away... It does!
- And, most remarkably, look for a different manifestation of the chiral anomaly one that requires \vec{B} , QGP, v_2 and a nonzero electric charge density:

$$\vec{j}_A = \frac{N_c e}{2\pi^2} \mu_V \vec{B}$$
 $\vec{j}_V = \frac{N_c e}{2\pi^2} \mu_A \vec{B}$

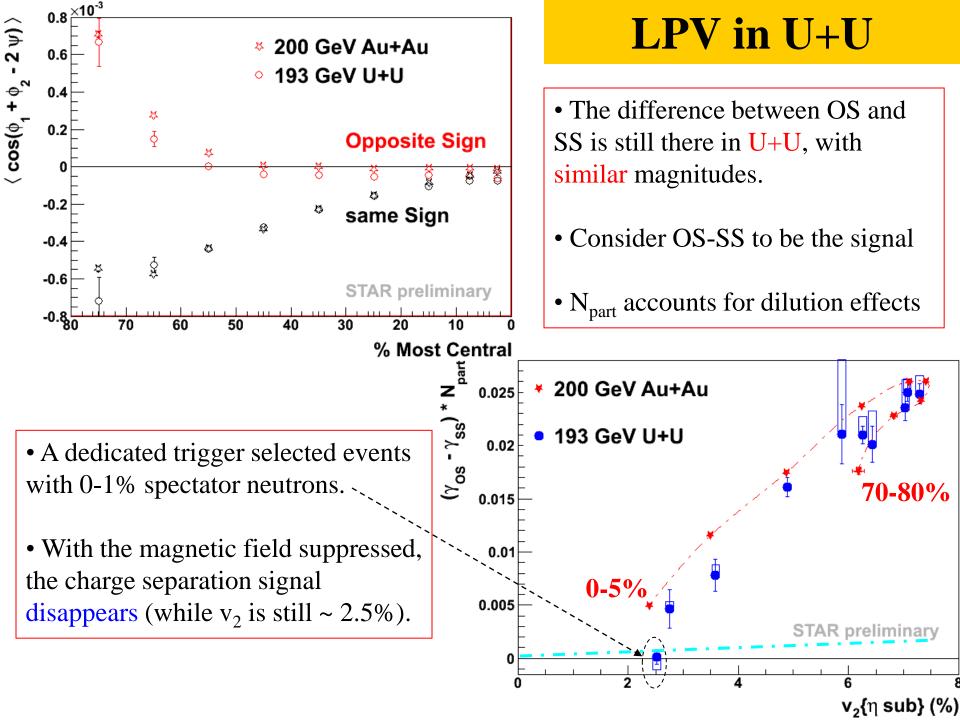
Select events with nonzero charge density, and look for...

Disappearance of Charge Separation w.r.t. ΕP

Wang, IVB, Thu.

- Motivated by search for local parity violation. Require sQGP formation.
- The splitting between OS and LS correlations (charge separation) seen in top RHIC energy Au+Au collisions.

This charge separation signal disappears at lower energies (<= 11.5 GeV)!



Does Reality Bite?

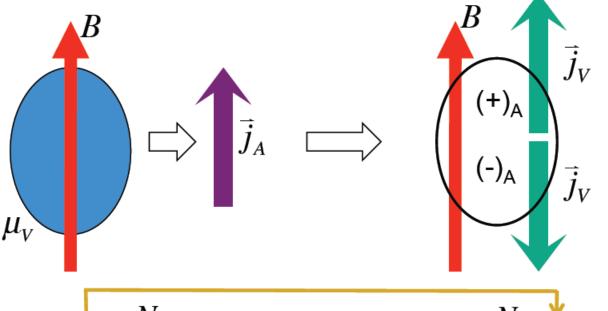
- A clear signal, first at STAR then ALICE, in an observable that *could* indicate event-by-event charge separation.
- BUT: this observable could instead indicate novel, but prosaic, hadron-gas physics. Tendency for opposite-sign hadrons to be near each other, plus v_2 , can "fake" this.
- So, turn off QGP, keep v_2 , and see whether the effect goes away... It does!
- So, turn off \vec{B} , keep v_2 [by colliding U-U, side-on-side] and see whether the effect goes away... It does!
- And, most remarkably, look for a different manifestation of the chiral anomaly one that requires \vec{B} , QGP, v_2 and a nonzero electric charge density:

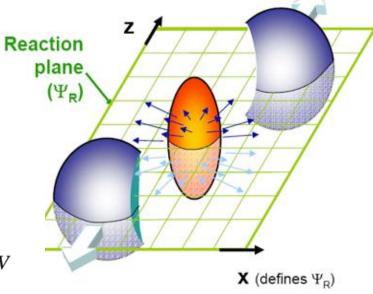
$$\vec{j}_A = \frac{N_c e}{2\pi^2} \mu_V \vec{B}$$
 $\vec{j}_V = \frac{N_c e}{2\pi^2} \mu_A \vec{B}$

Select events with nonzero charge density, and look for...

Does Reality Bite?

- A clear signal, first at STAR then ALICE, in an observable that *could* indicate event-by-event charge separation.
- BUT: this observable could instead indicate novel, but prosaic, hadron-gas physics. Tendency for opposite-sign hadrons to be near each other, plus v_2 , can "fake" this.
- So, turn off QGP, keep v_2 , and see whether the effect goes away... It does!
- So, turn off \vec{B} , keep v_2 [by colliding U-U, side-on-side] and see whether the effect goes away... It does!
- And, most remarkably, look for a different manifestation of the chiral anomaly one that requires \vec{B} , QGP, v_2 and a nonzero electric charge density:

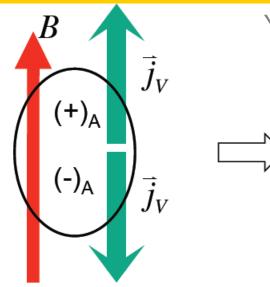

$$\vec{j}_A = \frac{N_c e}{2\pi^2} \mu_V \vec{B}$$
 $\vec{j}_V = \frac{N_c e}{2\pi^2} \mu_A \vec{B}$

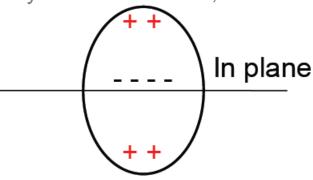

Select events with nonzero charge density, and look for...

Motivation

CSE + CME → Chiral Magnetic Wave:

- collective excitation
- signature of Chiral Symmetry Restoration

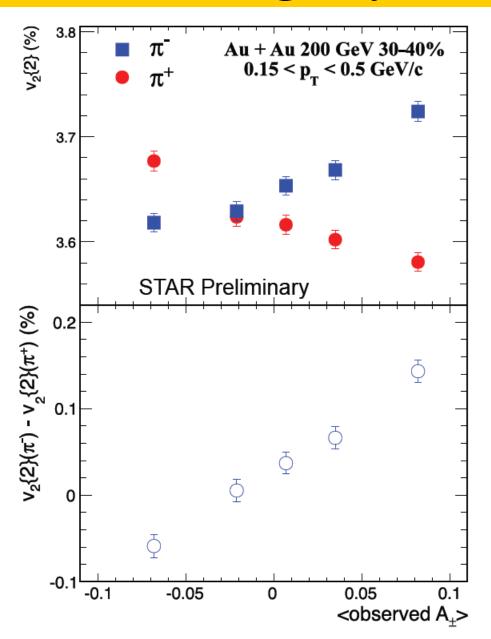



Peak magnetic field ~ 10¹⁵ Tesla!

(Kharzeev et al. NPA 803 (2008) 227)

Observable I

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, Phys. Rev. Lett. 107, 052303 (2011)



Formation of electric quadrupole: $v_2^{\pm} = v_2 \mp (\frac{q_e}{\overline{\rho}_e}) A_{\pm}$,

where charge asymmetry is defined as $A_{\pm} = \frac{N_{+} - N_{-}}{\overline{N} + \overline{N}}$

Then $\pi^- v_2$ should have a positive slope as a function of A_\pm , and $\pi^+ v_2$ should have a negative slope with the same magnitude. The integrated v_2 of π^- is not necessarily bigger than π^+ : (other physics) only the A_+ dependency matters for CMW testing.

Charge asymmetry dependency

- v₂ was measured with the Q-cumulant method.
- Clear A_± dependency
- $v_2(A_+)$ slopes for π^{\pm} :
 - opposite sign
 - similar magnitude
- v_2 difference vs A^{\pm} may have a non-zero intercept: other physics?

$$v_2^{\pm} = v_2 + (\frac{q_e}{\overline{\rho}_e}) A_{\pm}$$

Sphalerons + Anomaly $+\vec{B}$?

- Macroscopic realization of a quantum anomaly! Chiral symmetry restored!
- Sphalerons, the same gauge theory dynamics whose SU(2) incarnation may be responsible for the matter-antimatter excess in the universe via either leptogenesis or electroweak baryogenesis subject to experimental investigation!! (Impossible any other way.)
- Sounds too good to be true. And, when more prosaic explanations were posited after the initial discovery, reality seemed to be intervening.
- But, this story has made three subsequent predictions, all of which are now seen. In two cases, only very recently meaning that confirmation and scrutiny are needed. And, much more quantitative modelling. But, it is hard to see how the prosaic can strike back.

Stay Tuned...

Liquid QGP at LHC and RHIC. New data (v_n at RHIC and LHC; CuAu and UU collisions at RHIC) and new calculations tightening the constraints on η/s and perhaps its T-dependence ...

Probing the Liquid QGP. Jet quenching. Heavy quark energy loss. Upsilons. Photons. Photon+jet. Each of these is a story now being written. Seeing, and then understanding, how the liquid QGP emerges from asymptotically free quarks and gluons remains a challenge, as well as an opportunity...

Mapping the QCD phase diagram via the RHIC energy scan has begun...

And, maybe, sphaleron dynamics manifest in the laboratory...