M

The COUPP Dark Matter Search

Results from the first year of deep-underground running at SNOLAB

The COUPP Collaboration

University of Chicago

Juan Collar (PI, spokesperson), C. Eric Dahl, Drew Fustin Russell Neilson, Alan Robinson

Fermilab

Indiana University South Bend

Ed Behnke, Joshua Behnke, Tonya Benjamin, Austin Conner, Emily Grace, Adam Grandison, Cale Harnish, Ilan Levine (PI), Thomas Nania, Tim Raymond

Fermilab

Steve Brice, Dan Broemmelsiek, Peter Cooper, Mike Crisler, Jeter Hall, Hugh Lippincott, Erik Ramberg, Andrew Sonnenschein, Fermilab Engineers and Technicians

SNOLAB

Eric Vazquez Jauregui

Outline

- The Hunt for Dark Matter
 - □ Brief History of Dark Matter
 - □ The WIMP Miracle
 - ☐ How to Catch a WIMP
- Bubble Chamber Basics
 - □ Bubble Chambers as Dark Matter Detectors
- COUPP 4kg @ SNOLAB Results
 - □ Acoustic Discrimination
 - ☐ Limits on WIMP scattering cross sections
 - □ The road onward…

- Fritz Zwicky, 1933
 - Motion of galaxies in Coma Cluster
- Vera Rubin et. al., 1960's
 - Motion of stars, satellites around galaxies

Precision Cosmology: $\Omega_{\rm M}$

- Mass in clusters
 - Velocity dispersion
 - Gravitational lensing measure Ω_M
- CMB anisotropy

$$\Omega_{\Lambda} + \Omega_{M} = 1$$

Expansion history of Universe

$$\frac{1}{H_0^2}\frac{\ddot{a}}{a} = -\frac{1}{2}\Omega_m \left(\frac{a_0}{a}\right)^3 + \Omega_{\Lambda}$$

Precision Cosmology: Ω_{B}

- Big BangNucleosynthesis
 - Baryon density determines primordial abundance of light nuclei
- CMB Anisotropy
- X-ray emmision from intracluster gas

Two more things...

Structure Formation requires non-relativistic dark matter

Bullet Cluster shows non- or weakly-interacting dark

matter

Dark Matter ...

- doesn't emit, absorb, or scatter photons, lts dark!
- doesn't decay, Its made in the BB & still here
- isn't baryonic, or BBN doesn't work
- isn't relativistic, bound to (is) the galaxy
- doesn't have any strong interactions...

The sun isn't 6x heavy

No candidates in the Standard Model!

Relics and Miracles

- Suppose Dark Matter is:
 - Stable Particle (LSP...)
 - Thermal Relic of Big Bang
- Weak-scale interaction gives required density for dark matter

WIMP Detection

- We live in a Dark Matter halo!
 - Local density ~0.4 GeV/cm³
 - rms velocity 230 km/s
- Look for coherent elastic scattering off of nuclei
- Two generic interactions
 - Spin-Independent
 (e.g., scalar coupling, ...)
 Coherent Scattering (σ ∝ A²)
 - Spin-Dependent (e.g., vector coupling, ...) Couples to odd-nucleon

WIMP Detection

- We live in a Dark Matter halo!
 - Local density ~0.4 GeV/cm³
 - rms velocity 230 km/s
- Look for coherent elastic scattering off of nuclei
 - Recoil energies O(10) keV
 - Rates ≤ O(1) event / kg-year

XENON100, 3 events in 4 kg-years, (consistent with expected background) *Phys. Rev. Lett.* **107**, 131302 (2011)

WIMP Detection

- We live in a Dark Matter halo!
 - Local density ~0.4 GeV/cm³
 - rms velocity 230 km/s
- Look for coherent elastic scattering off of nuclei
 - Recoil energies O(10) keV
 - Rates ≤ O(1) event / kg-year
 - Many backgrounds from natural radioactivity

Internal Backgrounds

β-decays

- Screen and purify detector materials
- Discriminate between electron tracks and nuclear recoils

α-decays

- Screen and purify detector materials
- Discriminate between O(10) keV
 WIMP events and 5 MeV
 α-decays

External Backgrounds

neutrons

- Produced by fission, (α,n) reactions, cosmic rays
- Give elastic scatters off nuclei, same as WIMP signal
- Shield detector with low-z moderator, screen materials, go underground
- Reject multiple-scatters

External Backgrounds

neutrons

- Produced by fission, (α,n) reactions, cosmic rays
- Give elastic scatters off nuclei, same as WIMP signal
- Shield detector with low-z moderator, screen materials, go underground
- Reject multiple-scatters

gammas

- Compton Scatter in detector
- Discriminate between electron tracks and nuclear recoils
- Shield detector with high-z materials, screen components
- Reject multiple-scatters

External Backgrounds

neutrinos

- Discriminate against chargedcurrent interactions
- No defense against high-energy neutrino neutral-current elastic scatters off nuclei

Irreducible neutrino background at O(1) event / 10 ton-years

Detector Requirements

Sensitivity to O(10) keV nuclear recoils

Scalability to ton-scale targets

Discrimination against backgrounds

Present Detection Schemes

- Cryogenic
 - CDMS, EDELWEISS

\$\$\$ • CRESST

Ge, phonon + charge CaWO₄, phonon + scintillation

- Liquid Noble
 - XENON, LUX, ZEPLIN

\$\$

- XMASS
- WARP, ArDM, Darkside
- DEAP/CLEAN

Xe, TPC (charge + scintillation) Xe, scintillation only

Ar, TPC (charge + scintillation) Ar, Ne, scintillation only

- Solid Scintillator
 - **\$** Dama/Libra, KIMS

Nal / Csl, scintillation only

- Superheated Fluid
 - COUPP
 - PICASSO, SIMPLE

CF₃I, bubble chamber C₄F₁₀, superheated droplets

M

Why So Many Experiments & Techniques?

- Signal is small
 - □ Handful of events with limited information in 1-1000 Kg-year
 - Energy deposited
 - Time of event
 - Prompt signal / delayed signal
 - Maybe just a bubble if above threshold
- Backgrounds are not well quantified
 - Radio-assay in very clean real materials is hard
 - □ Simulation is hard (neutron transport, …)
 - □ What about the background(s) we don't know about yet?
 - □ Its all about the backgrounds not the tonnage!
- Impact of a real discovery is huge (think Sweden)
 - □ The same signal in different detectors / nuclei is required
 - □ It going to "take a village"
- I'll not be convinced by one experiment's discovery claim even if we're the ones making it!

Bubble Chamber

Superheated CF₃I target

Particle interactions nucleate bubbles

Cameras capture bubbles

Chamber recompresses after each event

Bubble Chamber

Spin-indep

Superheated CF₃I target

- Particle interactions nucleate bubbles
- Cameras capture bubbles
- Chamber recompresses after each event

Propylene Glycol (hydraulic fluid)

What does it take to nucleate a Bubble?

- Only proto-bubbles with $r > r_{crit}$ grow to be macroscopic
- Critical proto-bubble requires minimum dE within minimum volume
- Recoil must be over thresholds in both E and dE/dx

No sensitivity to γ 's or β 's, but α 's do make bubbles

alpha-decays

- Nuclear recoil + 40 μm alpha track
- 1 bubble

neutrons

- Nuclear recoils, mean free path ~20 cm
- 3:1 single-multiple ratio in COUPP 4kg

WIMPs

- Nuclear recoil, mean free path
 > 10¹² cm
- 1 bubble

Acoustic Discrimination

- Alpha louder when probing length scales
 40 μm
- Acoustic emission peaks at ~10 μm

SNOLAB installation in 2012...

Cosmicinduced neutron (2 bubbles)

SNOLAB installation in 2012...

Cosmicinduced neutron (1 bubble)

> 0.05 r v10.2012

CERN PH Seminar Peter Cooper, July 10, 2012 0.15

ms

SNOLAB installation in 2012...

Alpha-decay (1 bubble)

First data, July 28, 2010

Cosmic-induced neutron (1 bubble)

First data, July 28, 2010

Alpha-decay (1 bubble)

 n, α

Sudbury, Ontario

CERN PH Seminar Peter Cooper, July 10, 2012

M

COUPP 4kg @ SNOLAB

July 27, 2010, DAQ and Pressure Control Move Underground

Installation Begins: July 27, 2010

COUPP 4kg @ SNOLAB

Nov 3, 2010, Shield is completed Physics data begins!

CERN PH Seminar Peter Cooper, July 10, 2012 One leaky accumulator, a few leaky plumbing lines, a slightly overstretched bellows, and one unusual occurrence report later...

Installation Ends: Nov 3, 2010

Ŋ.

COUPP 4kg @ SNOLAB, WIMP search log

- 17.4, 21.9, 97.3 live-days at 8, 10, 15 keV thresholds
- 4.048 kg target, 79% cut-efficiency for nuclear recoils
 - 90% quality cuts, 92% fiducial cut, 96% acoustic cut

COUPP 4kg @ SNOLAB

"Acoustic Parameter"

- (Amp ω)²
 (Normalized and position-corrected)
- Measure of acoustic energy deposited in chamber

- 5.3 alphadecays / kg-day
 - 95% ²²²Rn,
 ²¹⁸Po, ²¹⁴Po
 triplets
- >98.9% alpha rejection
- >99.3% alpha rejection in 15 keV data

COUPP 4kg @ SNOLAB

- At 8 keV:
 - ☐ 6 WIMP candidates
- At 10 keV:
 - 6 WIMP candidates
 - 2 three-bubble events
- At 15 keV
 - 8 WIMP candidates
 - 1 two-bubble event

COUPP 4kg @ SNOLAB

- Multi-bubble events mean Neutron Background!
- Calibration gives 3:1 ratio for singles:multiples
 - \square 3 25 singles from neutrons
- O(0.1) per year from cosmic muons, cavern walls

Neutron sources!

- Piezoelectric element is ceramic PZT (Lead zirconate titanate)
- 4.0 ppm ²³⁸U
 1.9 ppm ²³²Th
 plus lots of modern lead
 with ²¹⁰Pb
- Both fission and (α,n)
 on light elements
- Accounts for ~1 background single

More Neutron sources!

- Camera Viewports
 - Proprietary formulation, probably soda-lime glass
- 0.5 ppm ²³⁸U
 0.8 ppm ²³²Th
- Lots of (α,n) on light elements
- Accounts for ~4 background singles

Now that we know...

- New piezos made with lowbackground salts
- New viewport made with synthetic silica
- Next COUPP 4 run begun May 2012

A Second Background?

- High AP
 - 4 evts at 8 keV
 - □ 2 evts at 10 keV
- Clustered in time at 8 keV
 - □ 3 High-AP evts in 3 hours
 - □ 4 evts (1 High-AP) in 9 hours
- <10 minutes after normal events</p>
 - At 8 keV:4/6 "WIMP"s and all High-AP evts
 - At 10 keV:3/6 "WIMP"s and1/2 High-AP evts

A Second Background?

- No anomalous background at 15 keV
- Still investigating source of this background
- Almost certainly not WIMPS!

(But counted as WIMP candidates in limit calculation)

Ŋ.

Threshold and Efficiency

WIMP sensitivity =

WIMP recoil spectrum x Bubble Nucleation Efficiency

Classical Thermodynamics says-

$$p_v-p_l=\frac{2\sigma}{r_c}$$

$$E_{th}=4\pi r_c^2\left(\sigma-T\frac{\partial\sigma}{\partial T}\right)+\frac{4}{3}\pi r_c^3\rho_v h$$
 Surface energy Latent heat

■ Energy deposition of E_{th} inside length r_c will nucleate bubble (Seitz "Hot-Spike" Model)

- Seitz Model Works for:
 - □ 6 keV ¹⁹F recoils in C₄F₁₀ [PICASSO Collaboration, arXiv 1011.4553]
 - □ 101 keV ²¹⁸Po recoils in C₄F₁₀ [PICASSO Collaboration, arXiv 1011.4553]
 - □ 101 keV ²¹⁸Po recoils in CF₃I

- Seitz Model doesn't work for:
 - □ Generic O(10) keV recoils in CF₃I
 - Neutron calibrations with AmBe and ²⁵²Cf source consistently give
 - ~50% the expected rate from MCNP and Geant4 simulations
 - Lower ratio of multiples:singles than simulations

100

Threshold and Efficiency

Which recoils cause problems...

■ 15 keV ¹⁹F and ¹²C in CF₃I have tracks significantly longer than critical radius

- Current Best Guess
 - ☐ Seitz model for ¹²⁷I recoils
 - □ Lower efficiency for ¹⁹F and ¹²C recoils
- Either of these efficiencies for ¹⁹F and ¹²C will reproduce rates and multiplicities observed in calibration
- Need new measurements to answer efficiency question

CIRTE March 2012

- T-1017
- Fermilab TestBeam Facility(M6)

COUPP lodine Recoil Threshold Experiment

Pion Elastic Scattering $\pi^-I \rightarrow \pi^-I$

- 2 week run
- 12 Gev/c π⁻
 - $\Box T = (P\theta)^2/2M_1$
 - □ 10KeV : 5 mRad
- pixel tracking
- one bubble/spill

re.

CIRTE Preliminary Results

- Analysis in progress
- 15 Kev Threshold data
 - □ Few days of data
 - □ 300 good bubbles
- $\epsilon = dN/dT_{bubbles}/$ dN/dT_{all}
- looks quite good.

b/A

COUPP 4kg @ SNOLAB

Ŋ.

COUPP 4kg @ SNOLAB

Summary & Plans

- 437 kg-days underground
- >99.3% acoustic alpha rejection
- Clear path to lower neutron background
- Next 4kg run begun in May
- COUPP60 commissioned at SNOLAB later in 2012
- COUPP500 proposal submitted
- The bubble chamber remains a competitive and cost effective tool to search for Dark Matter.

