PARTNER final Project Meeting

Influence of Oxygen Status and Radiation Quality on Cell Survival

Walter Tinganelli*

CNAO, Pavia, Italy 14-September-2012

Motivation

- Hypoxia characteristic feature of locally advanced solid tumors
- Hypoxic cells are more radioresistent (Oxygen effect)
- Often responsable for local recurrences
- Source of metastasis
- Hypoxia in tumors: $0.1 1\% O_2$
- High LET irradiation can reduce the oxygen effect

Questions:

- Which are the most appropriate ions?
- How can we simulate realistic tumor conditions in cell experiments?

First Step: Construction of a suitable chamber

Hypoxia: Acute and chronic

Hall&Giaccia 2006

Koh MY, Powis G

"...HIF-1 drives the initial response to hypoxia (<24h) and HIF-2 drives the chronic response (>24h). Here, we review the significance of the HIF switch and the relation between HIF-1 and HIF-2 under both physiological and pathophysiological conditions..."

I. Effects of Acute Hypoxia

Tinganelli, Ma et al.

- Test of the hypoxic chamber with different cell lines
- Measurement of the oxygen dependence for x-ray irradiation
- Analysis of the dependence of the OER on dose and survival level
- Comparison to similar measurements with high LET irradiation
- Measurement of the influence of increasing LET and atomic number on OER and RBE

Definition:

OER (Oxygen Enhancement Ratio) = **Dose**_{hypoxic}/ **Dose**_{oxic}

Hypoxia: GSI Experimental set up

Polyvinyl chloride

- ■Growth support gas permeable 25 µm foil
- ■Growth area 4,5 cm²
- ■Irradiation through chamber wall 1 mm thick (1.23 mm Water)

■200 ml/min for 2 hours

Hypoxia= $0.5\%O_2$

Anoxia= $0\%O_2$

First Tests:

RAT-1 Dunning Rat Prostate Cancer Cells ($\alpha/\beta = 4.69$ Gy)

CHO-K1 cells (α/β = 8.2 Gy)

1) Dependence on Oxygen state

cell line	radiation	oxic state	RBE_{10}	OER_{10}
CHO-K1	x-ray	oxic	-	-
		hypoxic	-	1.4 ± 0.04
		anoxic	-	$2.31{\pm}0.08$
	C-100	oxic	2.60 ± 0.07	-
		hypoxic	$2.88 {\pm} 0.21$	$1.27{\pm}0.09$
		anoxic	$3.03{\pm}0.19$	1.98 ± 0.12

2) Dependence on Particle and LET

cell line	radiation	oxic state	RBE_{10}	OER_{10}
CHO-K1	C-150	oxic	$2.54{\pm}0.14$	_
		anoxic	$4.48{\pm}0.15$	$1.31{\pm}0.08$
	N-160	oxic	$2.51{\pm}0.08$	-
		anoxic	$4.35{\pm}0.46$	$1.33{\pm}0.15$
	O-140	oxic	$2.27{\pm}0.09$	-
		anoxic	3.72 ± 0.86	$1.40{\pm}0.33$

Acute hypoxia:

OER and **RBE** survival dependence

Conclusions

- Applicability of the hypoxic chamber for x-ray and ion irradiation has been shown
- Both cell lines showed an increasing OER with decreasing survival
- This effect was less expressed for RAT-1 cells
- OER decreased with increasing LET
- Whereas the RBE under oxic conditions was in the same range for all LET values, there was still an increase in RBE with LET under anoxic conditions
- The influence of the LET on the OER was more expressed for RAT-1 cells

II. Effects of Chronic Hypoxia

Ma*, Tinganelli et al.

• Survival under chronic hypoxia and anoxia

• Cell cycle distribution

• Effects of reoxygenation

• Experiments performed with CHO-K1

1) Influence of Chronic Anoxia and Hypoxia

Cell Cycle Distribution

Effects of Reoxygenation

Effects of Reoxygenation

Conclusions

- RBE under anoxic conditions is reduced by chronic anoxia
- This effect has been found for x-ray and carbon irradiation
- Possible reasons are changes in cell cycle distribution
- Formerly anoxic cells are also more radiosensitive directly after reoxygenation
- For CHO-K1 cells chronic hypoxia in the measured frame has no similar influence

