Cosmic rays, climate and the CERN CLOUD experiment Spacepart 12 Conference CERN, 7 Nov 2012 Jasper Kirkby, CERN ### A brief history of Earth's climate ### Climate radiative forcings in Industrial Age (IPCC 2007) Radiative Forcings, 1750--2006 (IPCC, 2Feb07) ### Pre-industrial climate change ### Climate during the last 10,000 yr ### Solar-cosmic ray-climate mechanism ### Atmospheric aerosols and clouds ### Atmospheric aerosol nucleation (gas-to-particle conversion) ### **CERN CLOUD** experiment #### Key features: - beam ionisation (influence of cosmic rays) - suppression of contaminants - experimental stability & control (gas concentrations, temperature...) - comprehensive, stateof-art instrumentation ### The CERN CLOUD experiment 30 sampling instruments are currently attached to CLOUD, including 9 state-of-art mass spectrometers for unprecedented ion and molecular information on aerosol particle nucleation and growth: PTR-TOF (U Innsbruck) TD-CIMS (NCAR) IMS-TOF (U HEL) API-TOF- (U HEL) API-TOF+ (PSI) ### Inside the CLOUD chamber ### Atmospheric aerosol formation from trace gases ### Nucleation rates ## Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation Jasper Kirkby¹, Joachim Curtius², João Almeida^{2,3}, Eimear Dunne⁴, Jonathan Duplissy^{1,5,6}, Sebastian Ehrhart², Alessandro Franchin⁵, Stéphanie Gagné^{5,6}, Luisa Ickes², Andreas Kürten², Agnieszka Kupc⁷, Axel Metzger⁸, Francesco Riccobono⁹, Linda Rondo², Siegfried Schobesberger⁵, Georgios Tsagkogeorgas¹⁰, Daniela Wimmer², Antonio Amorim³, Federico Bianchi^{9,11}, Martin Breitenlechner⁸, André David¹, Josef Dommen⁹, Andrew Downard¹², Mikael Ehn⁵, Richard C. Flagan¹², Stefan Haider¹, Armin Hansel⁸, Daniel Hauser⁸, Werner Jud⁸, Heikki Junninen⁵, Fabian Kreissl², Alexander Kvashin¹³, Ari Laaksonen¹⁴, Katrianne Lehtipalo⁵, Jorge Lima³, Edward R. Lovejoy¹⁵, Vladimir Makhmutov¹³, Serge Mathot¹, Jyri Mikkilä⁵, Pierre Minginette¹, Sandra Mogo³, Tuomo Nieminen⁵, Antti Onnela¹, Paulo Pereira³, Tuukka Petäjä⁵, Ralf Schnitzhofer⁸, John H. Seinfeld¹², Mikko Sipilä^{5,6}, Yuri Stozhkov¹³, Frank Stratmann¹⁰, Antonio Tomé³, Joonas Vanhanen⁵, Yrjo Viisanen¹⁶, Aron Vrtala⁷, Paul E. Wagner⁷, Hansueli Walther⁹, Ernest Weingartner⁹, Heike Wex¹⁰, Paul M. Winkler⁷, Kenneth S. Carslaw⁴, Douglas R. Worsnop^{5,17}, Urs Baltensperger⁹ & Markku Kulmala⁵ **CLOUD** institutes: Austria: University of Innsbruck University of Vienna Finland: Finnish Meteorological Institute Helsinki Institute of Physics University of Eastern Finland University of Helsinki **Germany:** Johann Wolfgang Goethe University Frankfurt Karlsruhe Institute of Technology Leibniz Institute for Tropospheric Research Portugal: University of Beira Interior University of Lisbon Russia: Lebedev Physical Institute Sweden: University of Stockholm Switzerland: CERN Paul Scherrer Institut United Kingdom: University of Manchester University of Leeds United States of America: California Institute of Technology Carnegie Mellon University ### CLOUD: H₂SO₄ binary nucleation - Nominally "pure" binary H₂SO₄-H₂O nucleation (but few ppt NH₃ contaminant is present) - Significant GCR/ion enhancement (factor 2-10) - Binary nucleation can only take place under coldest conditions (FT or polar) ### CLOUD vs. atmospheric observations: NH₃+H₂SO₄ ~100 pptv NH₃ increases nucleation by up to factor 1000 but is too low to explain BL nucleation ### CLOUD: nucleation rate vs [ion-] GCR ionisation range in atmosphere ### Implications of first CLOUD results for lower atmosphere Poorly-known organic vapours are participating with sulphuric acid to form aerosol particles in the lower atmosphere - Important to identify these vapours: - If mainly anthropogenic: - New climate forcing from human activities? - If mainly biogenic: - New negative feedback of biosphere to reduce temperatures? ## Molecular composition of nucleating clusters ### Binary nucleation mechanism (+ contaminants) ### Ternary nucleation mechanism: NH₃ ### Clouds in CLOUD ### Candidate GCR-cloud mechanism no.2 ### CLOUD at the CERN PS, June 2012 ### Summary - Aerosols & clouds represent the largest uncertainty in anthropogenic climate change - Natural climate change / solar-climate variability on the century time scale is comparable to the present warming. The physical mechanism is unknown but could involve an influence of cosmic rays on clouds - CLOUD is the world's leading laboratory experiment to quantify the fundamental processes underlying both these questions - First CLOUD results: - ► Cosmic rays enhance formation of H₂SO₄ and NH₃-H₂SO₄ particles in the upper atmosphere - But we know even less than we thought we did: - ◆ Sulphuric acid and ammonia vapours are insufficient (by up to a factor 1000) to account for atmospheric aerosol formation