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A brief history of Earth’s climate
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2. increased cloud lifetime
(drizzle suppression)

1. increased cloud
albedo

unperturbed cloudscattering and
absorption of
solar radiation

“direct effect” “indirect effect”
(more cloud droplets)

cloud droplet
(CCN)aerosol

Climate radiative forcings in Industrial Age (IPCC 2007)

• aerosol forcings are important 
(but poorly understood)

• is there an unaccounted forcing 
from solar variability?
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Peterborough Psalter,
England, 1300-1318

The frozen Thames, 1677
Kirkby, Surv. Geophys., 2007
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Bond et al, Science 294, 2001
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cloud condensation
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• Key features:
‣ beam ionisation 

(influence of cosmic 
rays) 

‣ suppression of 
contaminants

‣ experimental stability 
& control 
(gas concentrations, 
temperature...)

‣ comprehensive, state-
of-art instrumentation



The CERN CLOUD experiment
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• 30 sampling instruments 
are currently attached 
to CLOUD, including
9 state-of-art mass 
spectrometers for 
unprecedented ion and 
molecular information 
on aerosol particle 
nucleation and growth: 

TD-CIMS (NCAR)

IMS-TOF (U HEL)

API-TOF+ (PSI)

API-TOF- (U HEL)

PTR-TOF
(U Innsbruck)

CI-APITOF (U HEL)

CI-APITOF (U Frankfurt)

CIMS (U Frankfurt)

NAIS (U HEL)



Inside the CLOUD chamber
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Atmospheric aerosol formation from trace gases
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boreal forest, Finland

CLOUD (3Nov12)
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Nucleation rates
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rays in atmospheric aerosol nucleation
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Serge Mathot1, Jyri Mikkilä5, Pierre Minginette1, Sandra Mogo3, Tuomo Nieminen5, Antti Onnela1, Paulo Pereira3, Tuukka Petäjä5,
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Atmospheric aerosols exert an important influence on climate1

through their effects on stratiform cloud albedo and lifetime2 and
the invigoration of convective storms3. Model calculations suggest
that almost half of the global cloud condensation nuclei in the
atmospheric boundary layer may originate from the nucleation of
aerosols from trace condensable vapours4, although the sensitivity of
the number of cloud condensation nuclei to changes of nucleation
rate may be small5,6. Despite extensive research, fundamental
questions remain about the nucleation rate of sulphuric acid
particles and the mechanisms responsible, including the roles of
galactic cosmic rays and other chemical species such as ammonia7.
Here we present the first results from the CLOUD experiment at
CERN. We find that atmospherically relevant ammonia mixing
ratios of 100 parts per trillion by volume, or less, increase the nuc-
leation rate of sulphuric acid particles more than 100–1,000-fold.
Time-resolved molecular measurements reveal that nucleation pro-
ceeds by a base-stabilization mechanism involving the stepwise
accretion of ammonia molecules. Ions increase the nucleation rate
by an additional factor of between two and more than ten at ground-
level galactic-cosmic-ray intensities, provided that the nucleation
rate lies below the limiting ion-pair production rate. We find that
ion-induced binary nucleation of H2SO4–H2O can occur in the mid-
troposphere but is negligible in the boundary layer. However, even
with the large enhancements in rate due to ammonia and ions,
atmospheric concentrations of ammonia and sulphuric acid are
insufficient to account for observed boundary-layer nucleation.

The primary vapour responsible for atmospheric nucleation is
thought to be sulphuric acid. However, theory suggests that peak con-
centrations in the boundary layer (106–107 cm23; ref. 8) are usually too
low for the binary nucleation of H2SO4–H2O to proceed. Furthermore,
after nucleation there is generally insufficient H2SO4 to grow the clusters
to cloud condensation nucleus sizes (more than 50 nm), so organic
species are primarily responsible for particle growth9,10. Nucleation of
sulphuric acid particles is known to be enhanced by the presence of
ternary species such as ammonia11–13 or organic compounds14 such as
amines15–17 or oxidized organic compounds18,19. Ions are also expected to
enhance nucleation20–24, and ion-induced nucleation has been observed

in the atmosphere25,26. Because the primary source of ions in the global
troposphere is galactic cosmic rays (GCRs), their role in atmospheric
nucleation is of considerable interest as a possible physical mechanism
for climate variability caused by the Sun27,28.

Here we address three issues that currently limit our understanding of
atmospheric nucleation and its influence on climate7. First, quantitative
measurements of the roles of ions and ternary vapours are lacking.
Second, the nucleation mechanism and the molecular composition of
the critical nucleus have not been directly measured. Third, it remains an
open question whether laboratory measurements are able to reproduce
atmospheric observations: recent experiments have concluded that atmo-
spheric concentrations of H2SO4 and H2O without ternary vapours are
sufficient29 or insufficient19 to explain boundary-layer nucleation rates.

We present here the first results from the CLOUD experiment at
CERN (see Methods, Supplementary Information and Supplementary
Fig. 1 for experimental details). The measurements, obtained at the
CERN Proton Synchrotron, represent the most rigorous laboratory
evaluation yet accomplished of binary, ternary and ion-induced nuc-
leation of sulphuric acid particles under atmospheric conditions.

The nucleation rates (J, cm23 s21) are measured under neutral (Jn),
GCR (Jgcr) and charged pion beam (Jch) conditions, corresponding to
ion-pair concentrations of about 0, 400 and 3,000 cm23, respectively.
A typical sequence of Jn, Jgcr and Jch measurements is shown in Sup-
plementary Fig. 2 and is described in the Supplementary Information.
Both Jgcr and Jch comprise the sum of ion-induced and neutral nuc-
leation rates, whereas Jn measures the neutral rate alone. The nuc-
leation rates are shown in Fig. 1 as a function of [H2SO4] at 248, 278
and 292 K. As the temperature is reduced, lower H2SO4 concentrations
are sufficient to maintain the same nucleation rates, as a result of the
decrease in the H2SO4 saturation vapour pressure. Apart from con-
taminants (see below), the only condensable vapours present in the
chamber for these data are H2SO4 and H2O. The experimental results
are slightly higher than model calculations30 based on thermochemical
data for charged H2SO4–H2O clusters23 under Jch ionization condi-
tions, but they show similar curvature and slope.

The presence of ions from ground-level GCR ionization (Jgcr curves)
enhances the neutral nucleation rate roughly twofold at 292 K and
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CLOUD:  H2SO4 binary nucleation
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• Nominally “pure” binary H2SO4-
H2O nucleation (but few ppt 
NH3 contaminant is present)

• Significant GCR/ion enhancement 
(factor 2-10)

• Binary nucleation can only take 
place under coldest conditions 
(FT or polar)
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• ~100 pptv NH3 increases 
nucleation by up to factor 
1000 but is too low to 
explain BL nucleation
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CLOUD: nucleation rate vs [ion-]
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Implications of first CLOUD results for lower atmosphere

• Poorly-known organic vapours are participating with sulphuric acid to 
form aerosol particles in the lower atmosphere

• Important to identify these vapours:

‣ If mainly anthropogenic:
✦ New climate forcing from

human activities?

‣ If mainly biogenic:
✦ New negative feedback of

biosphere to reduce
temperatures?
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Molecular composition of 
nucleating clusters
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Binary nucleation mechanism (+ contaminants)

20
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<< 10ppt NH3
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Ternary nucleation mechanism: NH3
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addition of one NH3 molecule

base-stabilisation
ternary nucleation mechanism:
1:1 molar ratio of H2SO4:NH3

440 ppt NH3

2.5E8 cm-3 H2SO4
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Clouds in CLOUD
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CLOUD at the CERN PS, June 2012
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Summary

• Aerosols & clouds represent the largest uncertainty in anthropogenic 
climate change

• Natural climate change / solar-climate variability on the century time scale is 
comparable to the present warming. The physical mechanism is unknown but 
could involve an influence of cosmic rays on clouds

• CLOUD is the world’s leading laboratory experiment to quantify the 
fundamental processes underlying both these questions

• First CLOUD results:
‣ Cosmic rays enhance formation of H2SO4 and NH3-H2SO4 particles in 

the upper atmosphere
‣ But we know even less than we thought we did:

✦ Sulphuric acid and ammonia vapours are insufficient (by up to a factor 
1000) to account for atmospheric aerosol formation
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