Higgs at a Linear Collider

Tim Barklow (SLAC) August 3, 2012

Outline

- Higgs Factory Options Under Discussion in Summer 2012
- The International Linear Collider (ILC) Machine
- Experimental Environment at the ILC
- Higgs Physics with the ILC:
- Summary

Main reference for Higgs Physics at the ILC:

H. Baer, et al., Physics at the International Linear Collider,

to appear in the ILC Detailed Baseline Design Report (2012).

A preliminary version is available at :

http://lcsim.org/papers/DBDPhysics.pdf

Higgs Factory Options Under Discussion in Summer 2012

- $\mu^+ \mu^-$ Collider at $\sqrt{s} = 126$ GeV
- $\gamma\gamma$ Collider at $\sqrt{s} = 126 \text{ GeV}$
- e^+e^- Storage Ring at $\sqrt{s} = 240$ GeV
- e^+e^- Linear Collider with 250 GeV $\leq \sqrt{s} \leq$ 1000 GeV (ILC or CLIC)

$$\mu^{+}\mu^{-} \rightarrow H$$
 ($\sqrt{s}=M_{H}$ Muon Collider Higgs Factory)

Using
$$\sigma_{peak} = \frac{972 \text{ nb}}{3M_H^2} \frac{1}{BR(H \to bb)}$$

 $\sigma_{peak}(\mu^+\mu^- \to H, M_H = 126 \text{ GeV}) = 35.3 \text{ pb}$

But must include muon beam energy spread

$$\Delta E_{beam} / E_{beam}$$
 $\sigma_{eff} (\mu^{+}\mu^{-} \rightarrow H, M_{H} = 126 \text{ GeV})$
0 35.3 pb
.01% 10.1 pb
0.1% 1.0 pb
0.4% 250 fb
 $\sigma(\mu^{+}\mu^{-} \rightarrow b\overline{b}) = 9.1 \text{ pb } @ \sqrt{s} = 126 \text{ GeV}$

Luminosity requirements tied strongly to achievable ΔE_{beam} / E_{beam} .

As an aside, simply scaling by mass

$$\sigma_{peak}(e^+e^- \to H, M_H = 126 \text{ GeV}) = 35.3 \text{ pb} \times \frac{M_e^2}{M_\mu^2}$$

= 0.8 fb

125 GeV μ⁺μ⁻ Higgs Factory (D.Neuffer)

Stop cooling here:

$$\epsilon_{\perp N}$$
 =0.3 π ·mm·rad, $\epsilon_{||N}$ =1 π ·mm·rad

There were a couple of early designs which can be taken as the starting point, e.g.:

- C.Johnstone, W.Wan, A.Garren, PAC 99, p.3066

Parameter	Unit	Value
Beam energy	GeV	62.5
Circumference, C	m	300
Number of IPs	-	1
β*	cm	5
Normalized emittance, $\epsilon_{\perp N}$	π·mm·rad	0.5
Momentum spread	%	0.005
Bunch length, $\sigma_{\rm s}$	cm	5
Long. emittance, $\epsilon_{ N}$	π·mm·rad	1.5
Number of muons / bunch	1012	2
Number of bunches / beam	-	1
Beam-beam parameter, ξ	-	0.0043
Repetition rate	Hz	30*
Average luminosity	10 ³¹ /cm ² /s	1.5
p-driver power	MW	4

^{*)} only 2, not 4 p-bunches are required on the target \rightarrow twice the reprate at the same p-driver power

Whether one is trying to produce high energy photons by cranking up the beamstrahlung photon energies in e^-e^- collisions, or by colliding the electron beams with laser beams near the IP, one needs an $e^-e^ \sqrt{s} \approx 1.25 \times M_H \approx 158$ GeV to produce Higgs bosons via $\gamma\gamma \to H$ at an appreciable rate.

Quantum Beamstrahlung: Prospects for a Photon-Photon Collider

Richard Blankenbecler and Sidney D. Drell

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

(Received 16 May 1988)

Collide the electron beams with laser beams near the IP

High electron polarization enhances the luminosity at high $E_{\gamma\gamma}$

7

High electron polarization provides another benefit. At the high end of the photon energy spectrum $(E_{\nu}/E_0 > 0.6)$ the helicity λ_{ν} of the backscattered photons follows the helicity λ_{e} of the incoming electrons.

Without high electron polarization the enhancement of the J=0 Higgs signal and suppression of the J=2 $b\bar{b}$ background would collapse.

PLC Measurement of $H \rightarrow bb$

This plot is from the CLICHE study assuming $M_H = 115$ GeV and 200 fb⁻¹. There are many other examples like this.

e^+e^- Storage Ring at $\sqrt{s} = 240 \text{ GeV}$

LEP3: A HIGH LUMINOSITY e⁺e⁻ COLLIDER IN THE LHC TUNNEL * TO STUDY THE HIGGS BOSON

A.P. Blondel, U. Geneva, Switzerland; F. Zimmermann, CERN, Geneva, Switzerland; M. Koratzinos, Geneva, Switzerland; M. Zanetti, MIT, Cambridge, Massachusetts, USA

$$\sigma(e^+e^- \to ZH) \approx 200 \text{ fb } M_H = 125 \text{ GeV } \sqrt{s} \approx 240 \text{ GeV}$$

* Also K.Oide, 'SuperTRISTAN - A possibility of ring collider for Higgs factory,' KEK Seminar, 13February 2012

sachusetts, USA				
	LEP2	LHeC	LEP3	DLEP
b. energy E _b [GeV]	104.5	60	120	120
circumf. [km]	26.7	26.7	26.7	53.4
beam current [mA]	4	100	7.2	14.4
#bunches/beam	4	2808	4	60
#e-/beam [10 ¹²]	2.3	56	4.0	16.0
horiz. emit. [nm]	48	5	25	10
vert. emit. [nm]	0.25	2.5	0.10	0.05
bending rad. [km]	3.1	2.6	2.6	5.2
part. number J_{ε}	1.1	1.5	1.5	1.5
mom. c. $\alpha_c [10^{-5}]$	18.5	8.1	8.1	2.0
SR p./beam [MW]	11	44	50	50
$\beta_x^*[m]$	1.5	0.18	0.2	0.2
β^*_{ν} [cm]	5	10	0.1	0.1
$\sigma_x^*[\mu m]$	270	30	71	45
$\sigma_y^* [\mu m]$	3.5	16	0.32	0.22
hourglass $F_{\rm hg}$	0.98	0.99	0.67	0.75
E ^{SR} _{loss} /turn [GeV]	3.41	0.44	6.99	3.5
V _{RF,tot} [GV]	3.64	0.5	12.0	4.6
$\delta_{\text{max,RF}}$ [%]	0.77	0.66	4.2	5.0
ξ_x/IP	0.025	N/A	0.09	0.05
ξ_y /IP	0.065	N/A	0.08	0.05
f₅ [kHz]	1.6	0.65	3.91	0.91
$E_{\rm acc}$ [MV/m]	7.5	11.9	20	418
eff. RF length [m]	485	42	606	376
for [MHz]	352	721	1300	1300
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.16
δ^{SR}_{ms} [%] $\sigma^{SR}_{z,ms}$ [cm]	1.61	0.69	0.23	0.17
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	N/A	107	142
number of IPs	4	1	2	2
beam lifetime [min]	360	N/A	16	22
$\Upsilon_{\rm BS} [10^{-4}]$	0.2	0.05	10	8
n ₃ /collision	0.08	0.16	0.60	0.25
$\Delta E^{\rm BS}/{\rm col.}$ [MeV]	0.1	0.02	33	12
$\Delta E^{\rm BS}_{\rm rms}/{\rm col.} \ [{ m MeV}]$	0.3	0.07	48	26

TD 1	1.C. 1.D.	$\overline{}$									
IP and	d General Parameters			TF = Trave	ling Focus	3					
		T							L Upgrade	E _{cm} U _I	grade
	Centre-of-mass energy	E cm	GeV	200	230	250	350	500	500	1000	1000
										A1	B1b
	Beam energy	E beam	GeV	100	115	125	175	250	500	500	500
	Collision rate	f_{rep}	Hz	5	5	5	5	5	5	4	4
	Electron linac rate	f_{linac}	Hz	10	10	10	5	5	5	4	4
	Number of bunches	n _b		1312	1312	1312	1312	1312	2625	2450	2450
	Electron bunch population	N.	×1010	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
	Positron bunch population	N ₊	×1010	2,0	2,0	2,0	2,0	2,0	2,0	1,74	1,74
	Bunch separation	t _b	ns	554	554	554	554	554	366	366	366
	Electron RMS energy spread	\mathbf{p}/\mathbf{p}	%	0,206	0,194	0,190	0,158	0,124	0,124	0,083	0,085
	Positron RMS energy spread	p/p	%	0,190	0,165	0,152	0,100	0,070	0,070	0,043	0,047
	Electron polarisation	P _	%	80	80	80	80	80	80	80	80
	Positron polarisation	P +	%	31	31	30	30	30	30	20	20
	Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0,498	0,607	0,681	0,878	1,50	3,00	3,23	4,31
	Coherent waist shift	W_y	m	250	250	250	250	250	250	190	190
	E Luminosity (inc. waist shift)	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	0,56	0,67	0,75	1,0	1,8	3,6	3,6	4,9
	Fraction of luminosity in top 1%	$L_{0.01}/L$	_	91,3%	88,6%	87,1%	77,4%	58,3%	58,3%	59,2%	44,5%
	Average energy loss	E_{BS}		0,65%	0,83%	0,97%	1,9%	4,5%	4,5%	5,6%	10,5%
	Number of pairs per bunch crossin	1g N pairs	×10°	44,7	55,6	62,4	93,6	139,0	139,0	200,5	382,6

Signal and Background Cross Sections at LHC and ILC

Beamstrahlung

10⁻⁵

 $\gamma\gamma \rightarrow hadrons$

Figure 1.5: Physics backgrounds from $\gamma\gamma$ produced e⁺e⁻ pairs, muon pairs, and hadronic events integrated over 150 bunch crossings (left) and a single bunch crossing (right).

e⁺e⁻ Polarization

IP and	General Parameters			TF = Trav	eling Focus	.S		i l		[1
					1					L Upgrade	e	E _{cm} U _I	pgrade
	Centre-of-mass energy	E cm	GeV	200	230	250	350	500		500		1000	1000
												A1	B1b
	Beam energy	E _{beam}	GeV	100	115	125	175	250		500		500	500
	Collision rate	f_{rep}	Hz	5	5	5	5	5		5		4	4
	Electron linac rate	f_{linac}	Hz	10	10	10	5	5		5		4	4
	Number of bunches	n _b		1312	1312	1312	1312	1312		2625		2450	2450
	Electron bunch population	N.	×1010	2,0	2,0	2,0	2,0	2,0		2,0		1,74	1,74
	Positron bunch population	N ₊	×1010	2,0	2,0	2,0	2,0	2,0		2,0		1,74	1,74
									\square				
	Bunch separation	t _b	ns	554	554	554	554	554		366		366	366
	Electron RMS energy spread	p/p	%	0,206	0,194	0,190	0,158	0,124		0,124		0,083	0,085
	Positron RMS energy spread	p/p	%	0,190	0,165	0,152	0,100	0,070		0,070		0,043	0,047
	Electron polarisation	Ρ.	%	80	80	80	80	80		80		80	80
1/	Positron polarisation	P +	%	31	31	30	30	30		30		20	20

Polarized e⁺e⁻ beams:

- Approximate collision of the fundamental e_i e_k / e_k e_i fields before EWSB
- Enhance/suppress processes to improve S/B; in particular $e_L^-e_R^+$ ($e_R^-e_L^+$) combination is used to enhance (suppress) W boson radiation.
- Disentangle amplitudes with γ^* and Z propagators

SiD Global Parameters

Detector	Technology	Radiu	ıs (m)	Axial	(z) (m)
		Min	Max	Min	Max
Vertex Detector	Pixels	0.014	0.06		0.18
Central Tracking	Strips	0.206	1.25		1.607
Endcap Tracker	Strips	0.207	0.492	0.85	1.637
Barrel Ecal	Silicon-W	1.265	1.409		1.765
Endcap Ecal	Silicon-W	0.206	1.25	1.657	1.8
Barrel Hcal	RPCs	1.419	2.493		3.018
Endcap Hcal	RPCs	0.206	1.404	1.806	3.028
Coil	5 tesla	2.591	3.392		3.028
Barrel Iron	RPCs	3.442	6.082		3.033
Endcap Iron	RPCs	0.206	6.082	3.033	5.673

Combining barrel and endcaps these trackers and calorimeters cover $|\cos \theta| \le 0.99$

LumiCal and BeamCal are used for $|\cos \theta| > 0.99$

SM Higgs decay mode histogram $M_H=125 \text{ GeV}$

Because all background is electroweak at the ILC, all Higgs decays, including fully hadronic decays, are accessible without any special conditions.

$$e^+e^- \rightarrow ZH \qquad \sqrt{s} \approx 250 \text{ GeV}$$

Higgs-strahlung Cross Section and Higgs Mass at the ILC

Golden Plated Channel at e⁺e⁻ Colliders

Sensitive to coupling at HZZ Vertex

$$Z\!
ightarrow \mathrm{e^{\scriptscriptstyle{+}}e^{\scriptscriptstyle{-}}}$$
 , $\mu^{\scriptscriptstyle{+}}\mu^{\scriptscriptstyle{-}}$

 $H \rightarrow$ anything, incl invisible

Higgs Recoil Mass: $M_h^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$

(Main) Background Processes <u>Boson Pair Production</u>

Lepton Pair Production

Background Rejection

```
P_{T,dl} > 20 \text{ GeV}

80 < M_{dl.} < 100 \text{ GeV}

0.2 < acop < 3.0

\Delta P_{Tbal.} > 10 \text{ GeV}

|cos \theta_{miss.}| < 0.99

115 < M_{recoil} < 150 \text{ GeV}

Dedicated cuts for radiative events

Multivariate Analysis
```

Results

Very Precise Measurement S/B = 8 in Peak Region

Bremsstrahlung in detector material

Combined: $\Delta M_H = 0.035 \text{ GeV}$, $\Delta \sigma_{HZ} / \sigma_{HZ} = 0.027$

$$\sigma_{HZ} \sim g_{HZZ}^2$$

⇒ Precision in g_{HZZ} coupling 1-2%

Sensitivity to 15% deviations SM prediction of cross section

When combined with a measurement of BR($H \rightarrow ZZ^*$) g_{HZZ} measurement also gives you sensitivity to Γ_{tot}

$e^+e^- \rightarrow ZH \qquad \sqrt{s} \approx 250 \text{ GeV}$ Higgs Spin

$$e^+e^- \rightarrow ZH$$
 $\sqrt{s} = 350 \text{ GeV}$
Higgs CP

$$\mathcal{M}_{\phi Z} = \mathcal{M}_{HZ} + \eta \cdot \mathcal{M}_{AZ}$$

Optimal observable O built from angles of $\mu^+\mu^-$ from decay of the Z

< O > most sensitive for small η For larger η $\sigma_{tot}(\eta)$ is better

 $L = 500 \text{ fb}^{-1}$

method	$w/o \sigma_{tot}$	with σ_{tot}		
	$\Delta \eta$			
$\cos \theta$	0.046	0.033		
$opt.obs.\mathcal{O}$	0.032	0.026		
< 0 >	0.032	0.026		

$e^+e^- \rightarrow ZH \qquad \sqrt{s} \approx 250 \text{ GeV}$

$\sigma \times BR$ measurements

All Z decays are used for measurement of $\sigma \times BR$. These include $Z \rightarrow qq$ and $Z \rightarrow \nu\nu$.

Divide by $\sigma(e^+e^- \to ZH)$ measurement to get BR's

Flavor tagging very important for distinguishing different decay modes

$$e^+e^- \rightarrow ZH \qquad \sqrt{s} \approx 250 \text{ GeV}$$
 $\sigma \times \text{BR}$ measurements

Results L=250 fb⁻¹

Observable	Expected Error
ILC at 250 GeV with 250 fb $^{-1}$	
$\sigma(Zh)$	0.025
$\sigma(Zh)\cdot BR(bar{b})$	0.010
$\sigma(Zh)\cdot BR(c\overline{c})$	0.069
$\sigma(Zh)\cdot BR(gg)$	0.085
$\sigma(Zh)\cdot BR(WW)$	0.08
$\sigma(Zh)\cdot BR(ZZ)$	0.28
$\sigma(Zh) \cdot BR(\tau^+\tau^-)$	0.05
$\sigma(Zh)\cdot BR(\gamma\gamma)$	0.27
$\sigma(Zh) \cdot BR(ext{invisible})$	0.005

$e^+e^- \rightarrow ZH$, $vvH \sqrt{s} = 350 \text{ GeV}$

At $\sqrt{s} \approx 350$ GeV the ZH cross section has fallen off, but the cross section for $e^+e^- \rightarrow vvH$ comes into play so the total Higg cross section remains $\sigma(e^+e^- \rightarrow ZH \& vvH) \approx 250$ fb.

 $\sqrt{s} \approx 350~{
m GeV}$ is expected to give better branching fraction measurements than $\sqrt{s} \approx 250~{
m GeV}$ due to improved S/B. The quantitative comparison is still under study. Also one gets a more complete Higgs profile using the WW fusion channel. The g_{HWW} coupling can be measured by combining a measurement of $\sigma(vvH) \times BR(H \to bb)$ with $BR(H \to bb)$ obtained at $\sqrt{s} \approx 250~{
m GeV}$. The g_{HWW} measurement gives a better estimate of Γ_{tot} than g_{HZZ} since $\Delta BR(H \to WW^*) \ll \Delta BR(H \to ZZ^*)$. A relative error of 6% on Γ_{tot} is expected at $\sqrt{s} \approx 350~{
m GeV}$ with 500 fb⁻¹

$e^+e^- ightarrow u u H$, ttH , ZHH , u u HH $\sqrt{s} = 1 \text{ TeV}$

At a $\sqrt{s} \approx 1 \text{ TeV } e^+e^-$ collider additional Higgs production modes are available such as $e^+e^- \to tth$ and $e^+e^- \to ZHH$, which provide measurements of the top Yukawa coupling and Higgs self coupling, respectively. In addition an e^+e^- collider continues as a Higgs factory at $\sqrt{s} \approx 1 \text{ TeV}$ since the total Higgs cross section is larger than the total cross sections at 250 and 350 GeV, especially if polarized beams are used:

$e^+e^- ightarrow u u H$, ttH , ZHH , u u HH $\sqrt{s} = 1 \text{ TeV}$

Results

ILC at 1 TeV with 1000 fb^{-1}	
$\sigma(WW) \cdot BR(WW)$	0.01
$\sigma(WW) \cdot BR(gg)$	0.018
$\sigma(WW) \cdot BR(\tau + \tau -)$	0.02
$\sigma(WW) \cdot BR(\gamma\gamma)$	0.05
$\sigma(WW) \cdot BR(\mu^+\mu^-)$	0.24
$\sigma(t \overline{t} h) \cdot BR(b \overline{b})$	0.12
λ_{hhh}	0.20

Comparison of LHC and ILC Coupling Measurements

LHC: 150 fb^{-1} per experiment @ $\sqrt{s} = 14 \text{ TeV}$

HLC: $250 \text{ fb}^{-1} e^{+} e^{-} @ \sqrt{s} = 250 \text{ GeV}$

ILC: $500 \text{ fb}^{-1} e^+e^- @ \sqrt{s} \approx 350 - 500 \text{ GeV}$

ILCTEV: $1000 \text{ fb}^{-1} e^{+}e^{-} @ \sqrt{s} = 1000 \text{ GeV}$

g(hAA)/g(hAA)|_{sm}-1 LHC/HLC/ILC/ILCTeV

33

Summary

- Several ideas for Higgs factories are under currently under discussion. However the most mature, realistic design at this time is the ILC, which can start at Ecm=250 GeV and can then be reasonably upgraded to higher energies to continue Higgs physics and hopefully other physics.
- The ILC can significantly improve the Higgs coupling measurements over what the LHC will ultimately achieve. It is a more natural environment in which to study the Higgs. The ability to probe couplings to the several percent level is crucial to distinguishing different Higgs models.