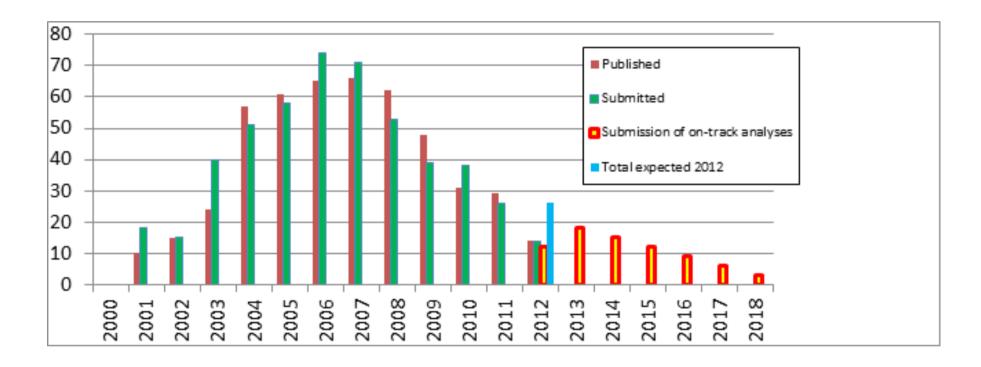

RECENT RESULTS FROM BABAR

Bertrand EchenardCalifornia Institute of Technology


on behalf of the BABAR Collaboration

40th SLAC Summer Institute SLAC – July 2012

Four years after the end of data taking, BABAR is still very productive !!!

So far, we have published 482 papers, and we expect to publish another ~80 analyses these next years.

We have already submitted 14 papers in 2012, and expect 12 more by end of this year

I'll discuss some recent results

Selected highlights from BABAR

Searches for T violation and new sources of CP violation

Observation of Time Reversal Violation in the B⁰ meson system, to be submitted soon

Search for CP Violation in the Decay $\tau^- \to \pi^- K_{\alpha}$ ($\geq 0\pi^0$) ν , submitted to PRD-RC, arXiv:1109.1527

Search for CP violation in the decays $D^{\pm} \to K_{_{g}}K^{\pm}$, $D^{\pm}_{_{g}} \to K_{_{g}}K^{\pm}$ and $D^{\pm}_{_{g}} \to K_{_{g}}\pi^{\pm}$, preliminary

Study of CP violation in Dalitz-plot analyses of $B^0 \to K^+K^-K_s$, $B^+ \to K^+K^-K^+$, and $B^+ \to K_s^-K_s^+K^+$, submitted to PRD, arXiv:1201.5897

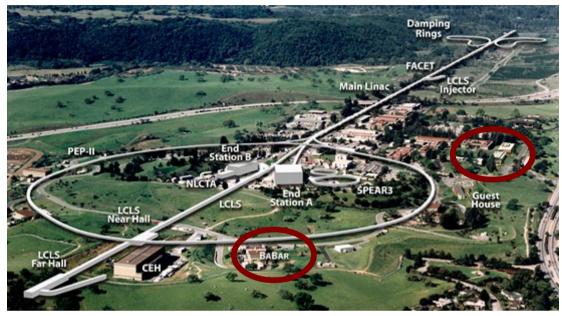
Searches for B decays with unique B factory signatures

Evidence for an excess of $B \rightarrow D^{(*)} \tau v$ decays, submitted to PRL, arXiv:1205.5442

Evidence of B $\rightarrow \tau v$ decays with hadronic tags, submitted to PRD-RC, arXiv:1207.0698

B⁰ **Decays to Invisible Final States and to ννγ**, submitted to PRD-RC, arXiv:1206.2543

Branching fraction measurement of B $\rightarrow \omega$ I ν decays, submitted to PRD, arXiv:1205.6245

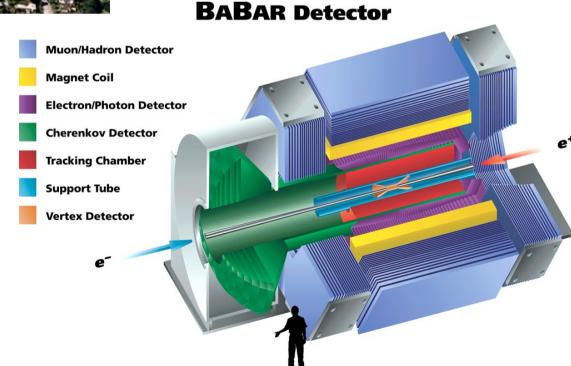

Branching fraction and form-factor shape measurements of exclusive charmless semileptonic B decays, and determination of |Vub|, to be submitted soon

Searches for New physics

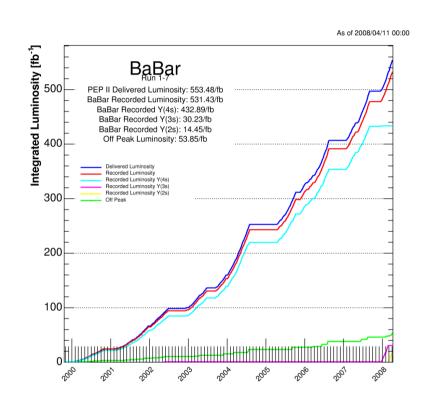
Search for Dark Higgs boson, PRL 108, 211801 (2012)

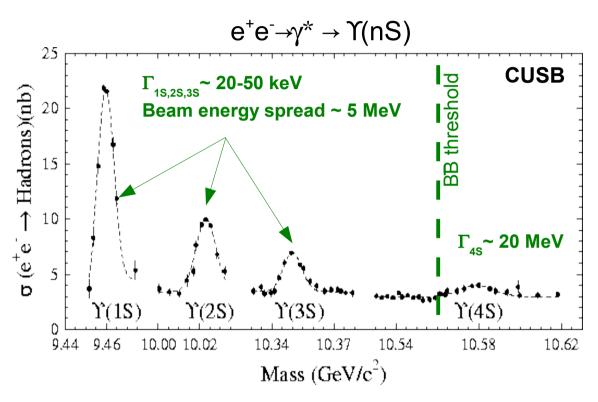
Search for Light Scalar Higgs Boson Decaying to Tau Pairs and Muon Pairs in Single-Photon decays of Y(1S), preliminary

The BABAR experiment at SLAC



BABAR @ PEP-II


BABAR @ IR2



The BABAR experiment at SLAC

BABAR collected around 533 fb⁻¹ of e⁺e⁻ collisions around the Υ(4S)

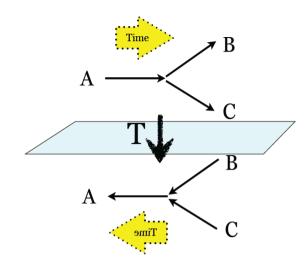
BABAR data sample contains

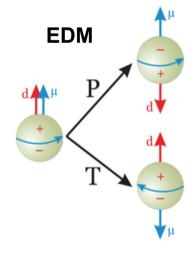
~470 x 10⁶
$$\Upsilon$$
(4S)
~120 x 10⁶ Υ (3S) (10x Belle, 25x CLEO)
~100 x 10⁶ Υ (2S) (10x CLEO)
~ 18 x 10⁶ Υ (1S) from Υ (2S) $\rightarrow \pi^+\pi^-\Upsilon$ (1S)

Time reversal violation in B⁰ meson decays

Time reversal violation

Time reversal is a discrete symmetry

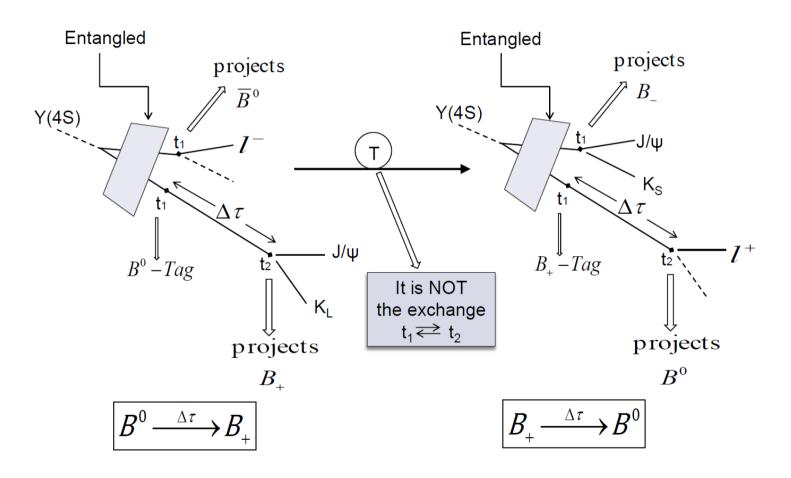

 \Rightarrow Exchanges |in> and |out> states, t \rightarrow -t.


Time reversal violating processes

- \Rightarrow A non-zero value of a T-odd observable in a stationary state, (e.g EDM) or a difference in the probability of a \rightarrow b from b \rightarrow a in an oscillation process at a given time t (e.g., $v_e \rightarrow v_u \text{ vs. } v_u \rightarrow v_e$).
 - Not observed yet.
- ⇒ Exchange |in> and |out> states in unstable systems.
 - Tricky to prepare the initial state.

The CP and T symmetries are connected via the CPT theorem

⇔ Observe CP violation → T violation (assuming CPT)



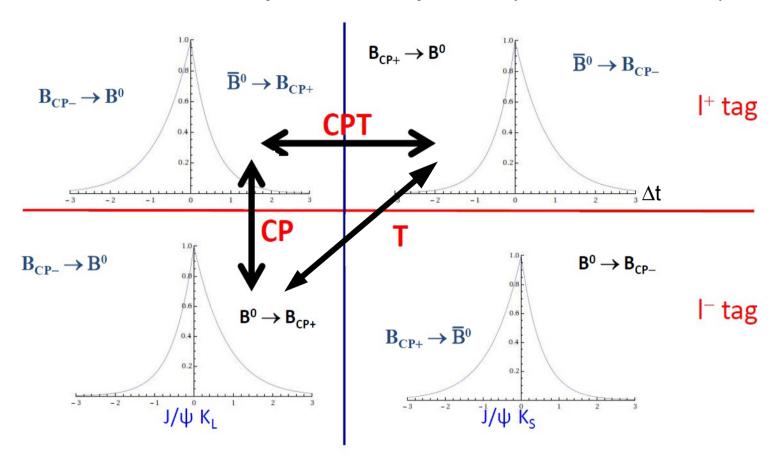
Can we observe direct T violation?

Time reversal violation in $B^0\overline{B}^0$ decays

Exploit quantum entanglement of the B⁰B⁰ pair produced at the Y(4S) to overcome the problem of irreversibility

Method described in J. Bernabeu *et al.* arXiv:1203.0171

Flavor eigenstates B^0 / \overline{B}^0


CP eigenstates
B_{CP+} / B_{CP-}

Tagging:

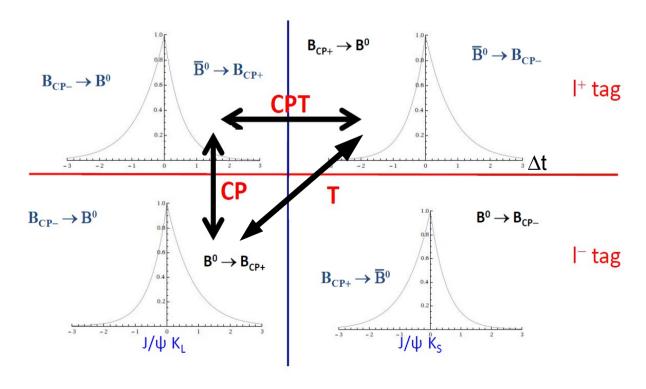
- flavor eigenstate, e.g. the sign of a prompt lepton in $B^0 \to I^+X$; $\overline{B}{}^0 \to I^-X$ decays
- CP eigenstate, reconstructing the final state J/ ψ K (CP+) or J/ ψ K (CP-)

Time reversal processes

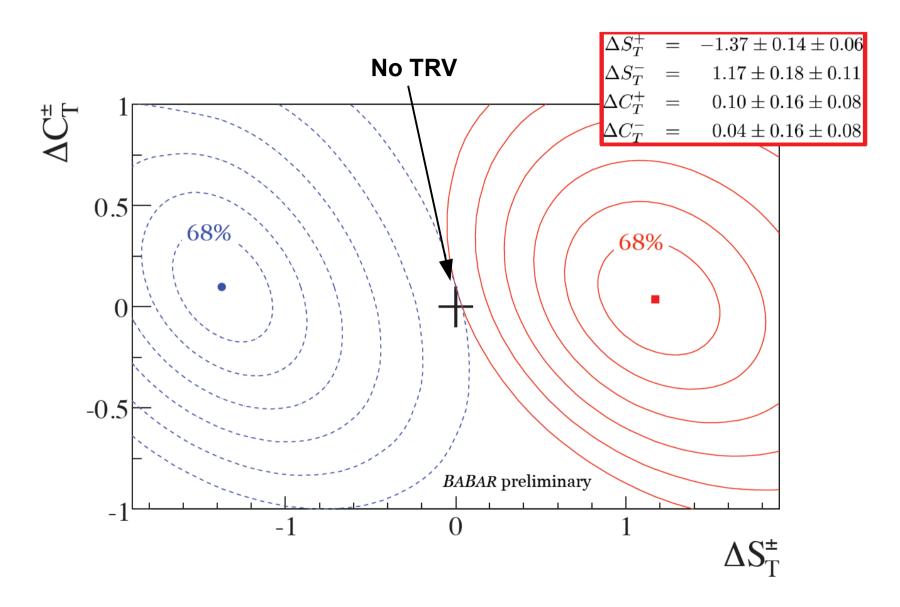
We can build 4 independent T comparisons (and 4 CP and 4 CPT)

TRV test imply comparison of

- Opposite ∆t sign
- Opposite CP states
- Opposite tag states

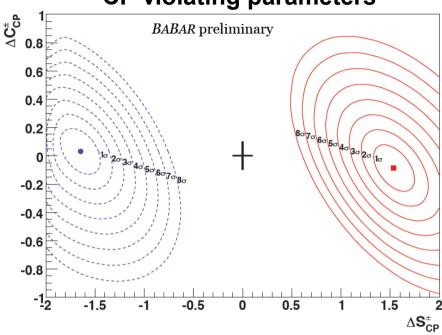

Time reversal violating parameters

Measure time dependent decay rates

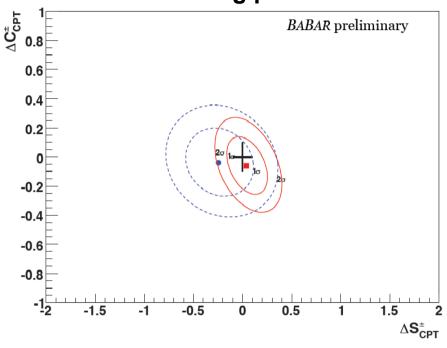

$$g_{\alpha,\beta}^{\pm}(\tau) \propto e^{-\Gamma|\tau|} \left\{ 1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_d \tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_d \tau) \right\} \qquad \begin{array}{l} \alpha = \mathsf{B}^0 \;, \; \overline{\mathsf{B}}^0 \\ \beta = \mathsf{J}/\psi \; \mathsf{K}_{_{\! S}} \;, \; \mathsf{J}/\psi \; \mathsf{K}_{_{\! L}} \\ \tau = \pm \; \Delta \mathsf{t} > 0 \end{array}$$

Unbinned maximum likelihood fit to extract the 8 (S[±],C[±]) values, including resolution, imperfect tagging and background.

Combine these 8 (S[±],C[±]) values to form a set of independent ($\Delta S^{\pm}_{T,CP,CPT}$, $\Delta C^{\pm}_{T,CP,CPT}$) differences sensitive to T, CP and CPT violations



Any non-zero ΔS/ΔC value corresponds to a symmetry violation


Observe time reversal violation with a significance $> 10\sigma$

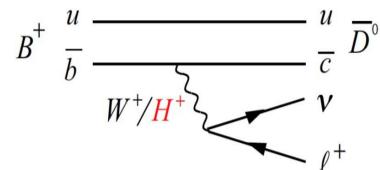
CP violating parameters

$$\Delta S_{CP}^{+} = -1.30 \pm 0.10 \pm 0.07$$
 $\Delta S_{CP}^{-} = 1.33 \pm 0.12 \pm 0.06$
 $\Delta C_{CP}^{+} = 0.07 \pm 0.10 \pm 0.03$
 $\Delta C_{CP}^{-} = 0.08 \pm 0.09 \pm 0.04$

CPT violating parameters

$$\Delta S_{CPT}^{+} = 0.16 \pm 0.20 \pm 0.09$$
 $\Delta S_{CPT}^{-} = -0.03 \pm 0.13 \pm 0.06$
 $\Delta C_{CPT}^{+} = 0.15 \pm 0.17 \pm 0.07$
 $\Delta C_{CPT}^{-} = 0.03 \pm 0.14 \pm 0.08$

Clear evidence of CP violation


and

no evidence of CPT violation

B → D^(*)τν decays

Tree-level semi-leptonic decay mediated by a W[±]

τ mode sensitive to New Physics contributions,
 e.g. charged Higgs boson H[±] in type-II Two Higgs Doublet Model (2HDM)

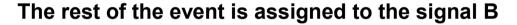
⇒ Reduce sensitivity to hadronic form factor and V_{cb} by measuring the ratio

$$R(D^{(*)}) = \frac{BF(B \to D^{(*)}\tau\nu)}{BF(B \to D^{(*)}l\nu)} = \text{e.u} \qquad \text{"signal"}$$

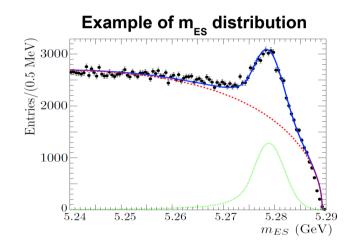
Previous measurements from B-factories

⇒ Above Standard Model predictions, but limited significance

New result from BABAR

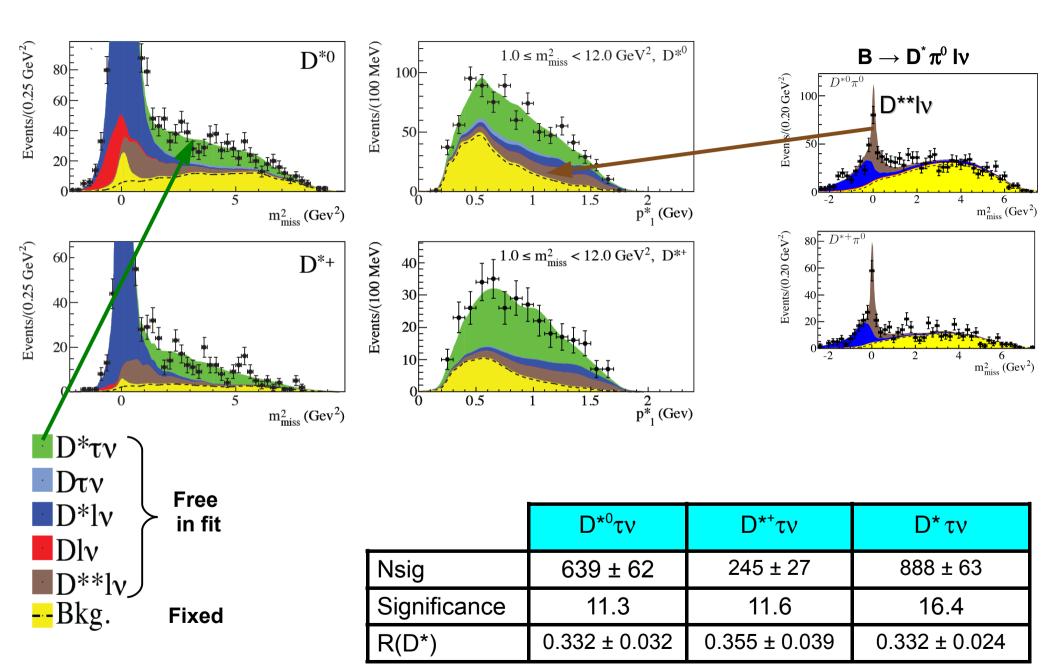

- ⇒ Based on full dataset (2x more statistics than previous result¹))
- ⇒ Signal yield increased by more than a factor 3

Main challenge: many neutrinos in the final state!!!

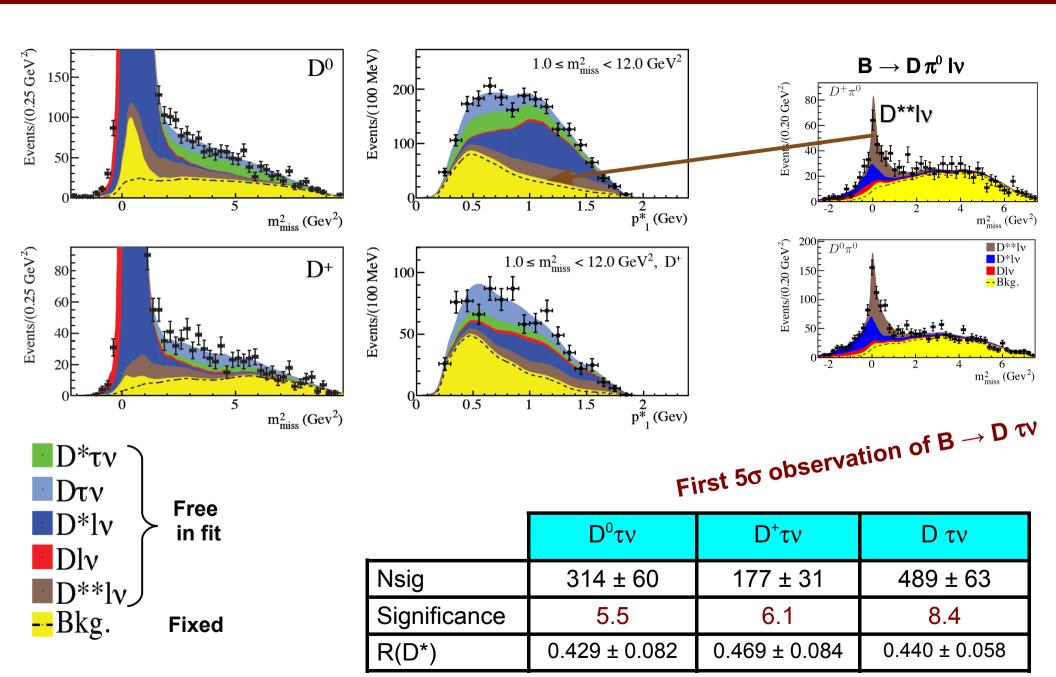

Event selection

Tagged analysis

- ⇒ exclusive reconstruction of one B meson, the "B_{tag}"
- \Rightarrow The beam-energy substituted mass $m_{ES} = ((E^*_{beam})^2 (p^*_{tag})^2)^{1/2}$
 - peaks at the B mass for signal with a resolution ~ 2.5 MeV
- \Rightarrow The energy difference $\Delta E = E^*_{tag} E^*_{beam}$
 - peaks at zero for signal with a resolution of ~ 18 MeV

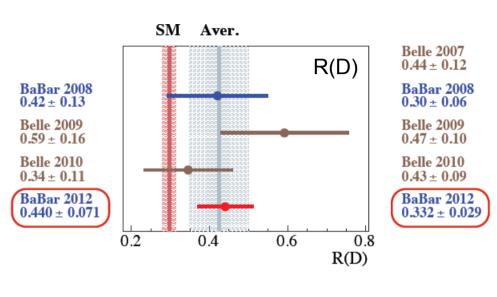


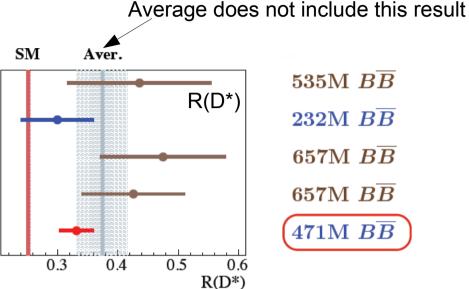
- \Rightarrow Must be compatible with B \to D^(*) $\tau \, \nu_{_{\tau}} /$ B \to D^(*) I $\nu_{_{I}}$ hypothesis
- ⇒ Reconstruct D/D* candidate
- Identify leptonic decays of τ lepton (final states have identical content except neutrinos)
- No additional charged particles and no significant extra neutral energy



Extract signal by a 2D unbinned maximum likelihood fit to

- □ Invariant mass of undetected particles and lepton momentum in B rest frame
- \Rightarrow Simultaneous fit with B \rightarrow D^(*) π^0 lv to constrain the contribution of B \rightarrow D** $\tau v + B \rightarrow$ D** lv

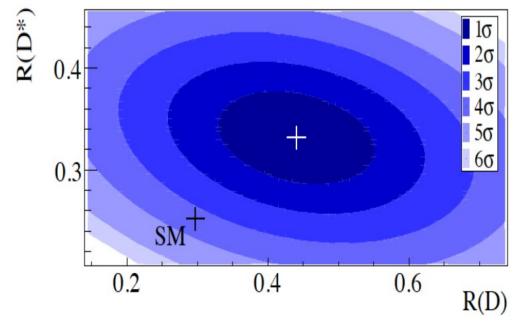

Only statistical uncertainties



Only statistical uncertainties

Comparison with previous measurements and SM predictions

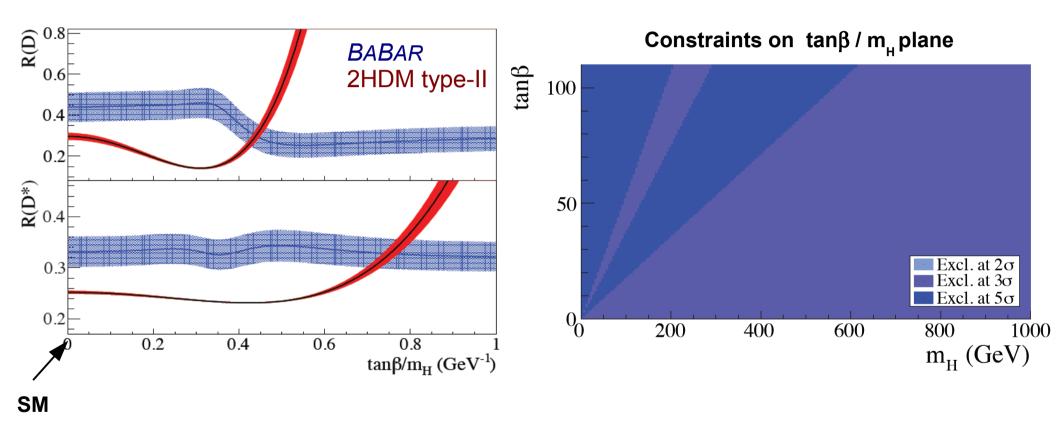
Consistent with previous measurements



$535 \mathrm{M} B \overline{B}$	
$232\mathrm{M}~B\overline{B}$	
$657 \mathrm{M} B\overline{B}$	
$657 \mathrm{M} B\overline{B}$	
$471M \ B\overline{B}$	

	R(D)	R(D*)
	0.440 ± 0.071 0.293 ± 0.017	0.332 ± 0.029 0.252 ± 0.003
Δ	2.0σ	2.7σ

The SM prediction is excluded at 3.4σ



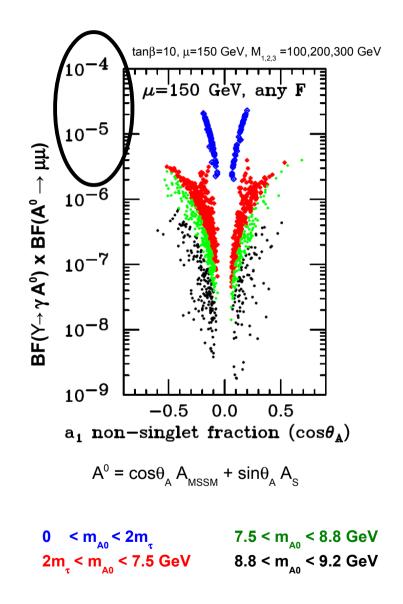
^[*] J.F. Kaminik and F. Mescia, Phys. Rev. D 78, 014003 (2008)

S. Fajfer et al., PRD 85, 094025 (2012).

Implication for 2HDM type-II

Simulated events reweighted at the matrix element level for 20 values of $tan\beta$ / $m_{_H}$ to reevaluate PDF, efficiencies and repeating fits.

2HDM type-II excluded at 99.8% CL on the whole range for H⁺ mass > ~10 GeV, and excluded below 10 GeV by B \rightarrow X_s γ measurements

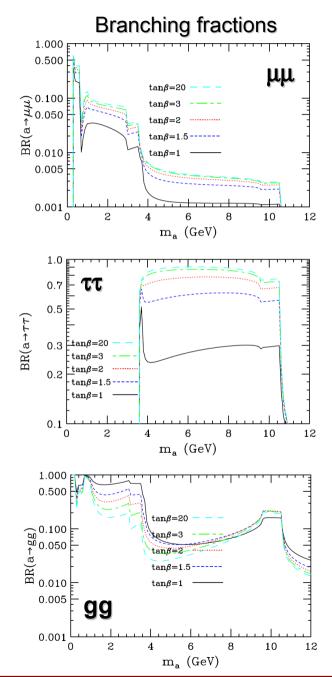

Search for light CP-odd Higgs

Dermisek et al., PRD 81, 075003 (2010)

Light Higgs boson

- A NMSSM proposed to solve the "μ problem", adding one CP-odd Higgs, one CP-even Higgs and one neutralino to MSSM content
- A light CP-odd Higgs A⁰ with mass lower than 2m_b is not excluded by LEP constraints
- Radiative decays $\Upsilon(nS) \rightarrow \gamma A^0$ (n=1,2,3) offer an ideal environment to search for light Higgs:
 - Fully reconstructed in A⁰→μ⁺μ⁻
 - Partially reconstructed in A⁰→τ⁺τ̄,qq
 - Invisible decay $A^0 \rightarrow \chi_1 \chi_1$ if $m_{A0} > 2m_{\chi}$

Can have a very large branching fraction

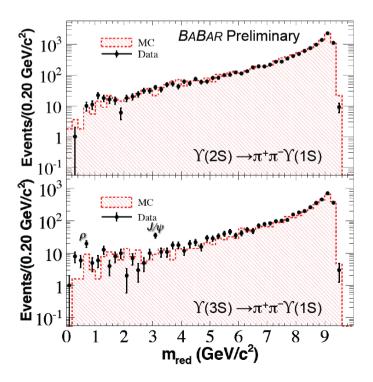


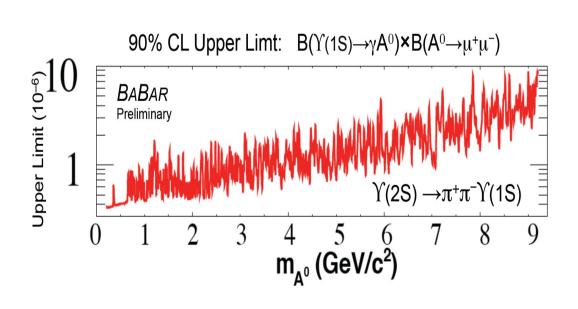
Dermisek et al., PRD 81, 075003 (2010)

Light Higgs boson

- A NMSSM proposed to solve the "μ problem", adding one CP-odd Higgs, one CP-even Higgs and one neutralino to MSSM content
- A light CP-odd Higgs A⁰ with mass lower than 2m_b is not excluded by LEP constraints
- Radiative decays $\Upsilon(nS) \rightarrow \gamma A^0$ (n=1,2,3) offer an ideal environment to search for light Higgs:
 - Fully reconstructed in A⁰→μ⁺μ⁻
 - Partially reconstructed in A⁰→τ⁺τ̄,qq
 - Invisible decay $A^0 \rightarrow \chi_1 \chi_1$ if $m_{A0} > 2m_{\chi}$

Can have a very large branching fraction

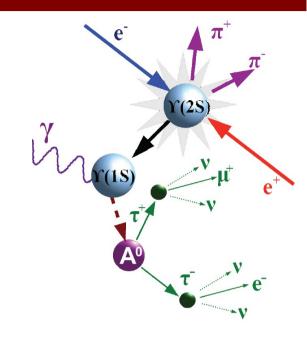

Search for A^0 in $Y(1S) \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^{\dagger} \mu^{\dagger}$

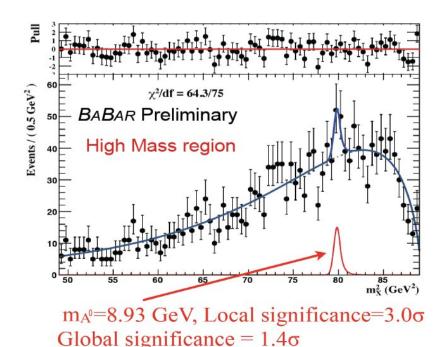

Search for a light CP-odd Higgs in

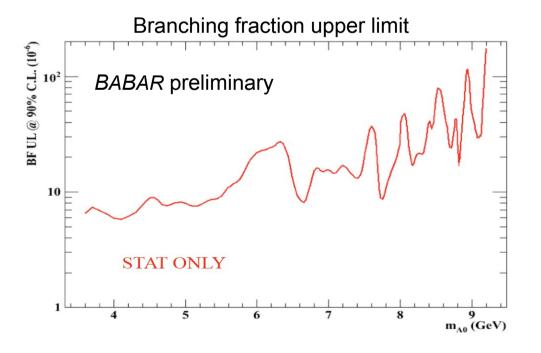
$$\Upsilon(2S,3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \Upsilon(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+}\mu^{-}$$

Analysis highlights

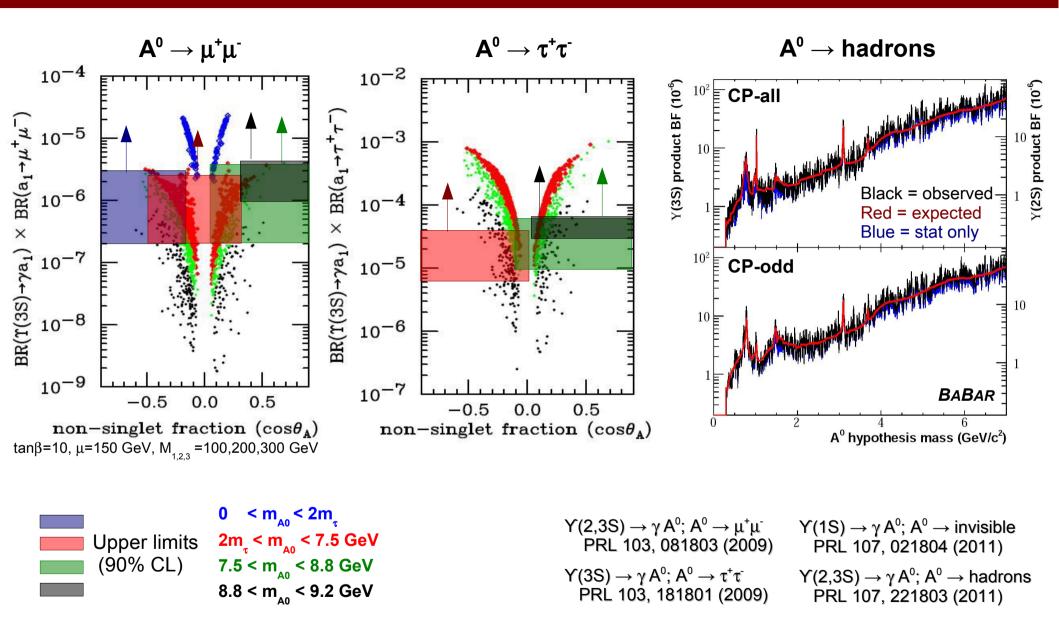
- ⇒ Require the γμμ system to be compatible with a Y(1S) meson
- \Rightarrow Fit for a narrow peak to the reduced dimuon mass $m_R = (m_{A0}^2 4m_{\mu}^2)^{1/2}$

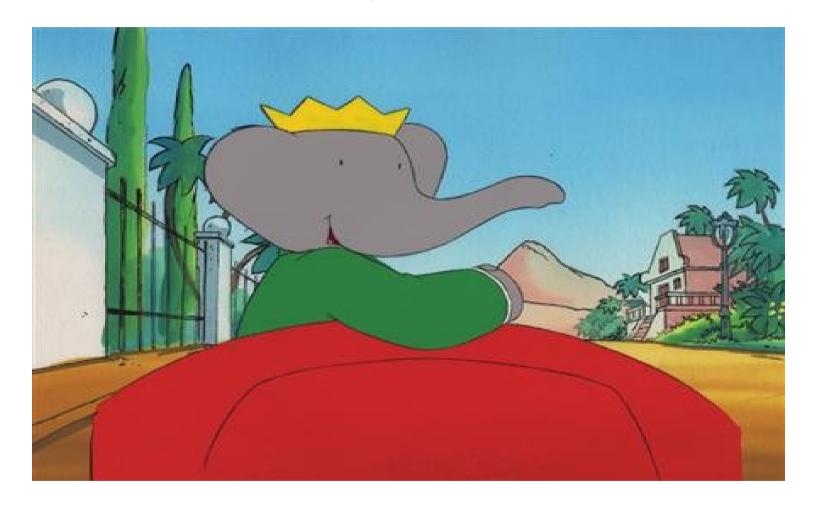

Search for A^0 in $Y(1S) \rightarrow \gamma A^0$, $A^0 \rightarrow \tau^{\dagger} \tau^{\dagger}$


Search for a light CP-odd Higgs in


$$\Upsilon(2S,3S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S), \Upsilon(1S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+}\tau^{-}$$

Analysis highlights

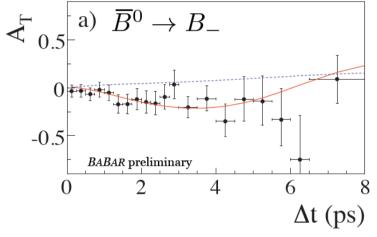

- \Rightarrow Use 1-prong decay of tau $(\tau \to \mu \nu \nu, \tau \to e \nu \nu, \tau \to \pi \nu \nu)$
- ⇒ Fit for a narrow peak to the photon recoil mass in the Y(1S) system

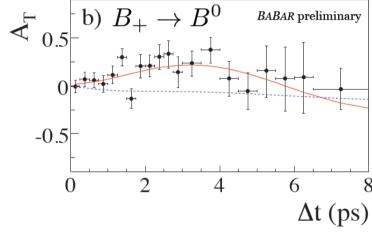

Search for light CP-odd Higgs - results

Substantial fraction of the parameter space excluded

Conclusion

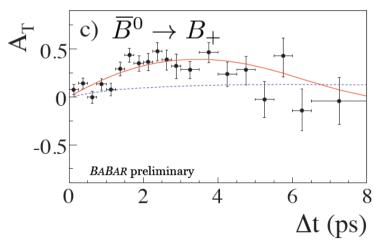
BABAR is still producing many interesting results, and more are to come. See you soon...

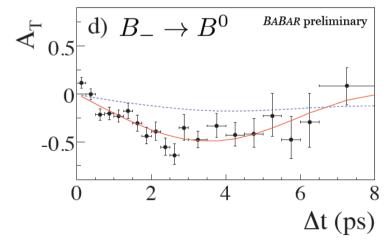



Extra material

Independent T asymmetries

Asymmetries of the 4 transitions studied


$$A_T(\Delta t) = \frac{\Delta C_T^+}{2} \cos(\Delta m \Delta t) + \frac{\Delta S_T^+}{2} \sin(\Delta m \Delta t)$$



Projection of fit without TRV

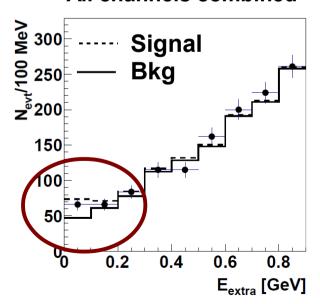
Projection of fit with TRV

Time reversal violation

BABAR preliminary	Parameter	Result	expectation from canonical <i>CP</i>
DADAN premimary	$S^+_{\ell^+ X, c\overline{c} K^0_S}$	$0.55 \pm 0.08 \pm 0.06$	+sin2β
	$S^{\ell^+ X, c\overline{c}K^0_S}$	$-0.66 \pm 0.06 \pm 0.04$	-sin2β
	$C^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.11 \pm 0.06 \pm 0.05$	0
	$C^{\ell^+ X, c\overline{c}K^0_S}$	$-0.05 \pm 0.06 \pm 0.03$	0
Т	$\Delta S_{\mathrm{T}}^{+} = S_{\ell-X,J/\psi K_{L}^{0}}^{-} - S_{\ell+X,c\overline{c}K_{S}^{0}}^{+}$	$-1.37 \pm 0.14 \pm 0.06$	-2sin2β
	$\Delta S_{\rm T}^{-} = S_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - S_{\ell^{+}X, c\bar{c}K_{S}^{0}}^{-}$	$1.17 \pm 0.18 \pm 0.11$	+2sin2β
	$\Delta C_{\rm T}^{+} = C_{\ell^{-}X, J/\psi K_{L}^{0}}^{-} - C_{\ell^{+}X, c\bar{c}K_{S}^{0}}^{+}$	$0.10 \pm 0.16 \pm 0.08$	0
	$\Delta C_{\rm T}^{-} = C_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - C_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{-}$	$0.04 \pm 0.16 \pm 0.08$	0
CP	$\Delta S_{\mathrm{CP}}^+ = S_{\ell^- X, c\overline{c}K_S^0}^+ - S_{\ell^+ X, c\overline{c}K_S^0}^+$	$-1.30 \pm 0.10 \pm 0.07$	-2sin2β
	$\Delta S_{\rm CP}^- = S_{\ell^- X, c\bar{c}K_S^0}^ S_{\ell^+ X, c\bar{c}K_S^0}^-$	$1.33 \pm 0.12 \pm 0.06$	+2sin2β
	$\Delta C_{\mathrm{CP}}^+ = C_{\ell^- X, c\overline{c}K_S^0}^+ - C_{\ell^+ X, c\overline{c}K_S^0}^+$	$0.07 \pm 0.09 \pm 0.03$	0
	$\Delta C_{\rm CP}^- = C_{\ell^- X, c\overline{c}K_S^0}^ C_{\ell^+ X, c\overline{c}K_S^0}^-$	$0.08 \pm 0.10 \pm 0.04$	0
CPT	$\Delta S_{\text{CPT}}^{+} = S_{\ell+X,J/\psi K_L^0}^{-} - S_{\ell+X,c\bar{c}K_S^0}^{+}$	$0.16 \pm 0.20 \pm 0.09$	0
	$\Delta S_{\text{CPT}}^- = S_{\ell+X,J/\psi K_L^0}^+ - S_{\ell+X,c\bar{c}K_S^0}^-$	$-0.03 \pm 0.13 \pm 0.06$	0
	$\Delta C_{\rm CPT}^{+} = C_{\ell^{+}X, J/\psi K_{L}^{0}}^{-} - C_{\ell^{+}X, c\bar{c}K_{S}^{0}}^{+}$	$0.15 \pm 0.17 \pm 0.07$	0
	$\Delta C_{\rm CPT}^{-} = C_{\ell+X,J/\psi K_L^0}^{+} - C_{\ell+X,c\bar{c}K_S^0}^{-}$	$0.03 \pm 0.14 \pm 0.08$	0

 $sin(2\beta) = 0.679 \pm 0.020$ (HFAG Winter'12)

Connection with $B \rightarrow \tau v$ decays


 $B \to \tau v$ is also a tree level decay mediated by a W[±], sensitive to New Physics contributions such as H[±].

$B^{+} \bigvee_{u}^{\overline{b}} H^{+} \bigvee_{v_{\ell}}^{l^{+}}$

Analysis similar to that of B \rightarrow D $\tau \nu$

- \Rightarrow Reconstruct of B_{tag} , assign rest of events to B_{sig}
- Extract signal as UML fit to the extra neutral energy of the event

All channels combined

Combine result with statistically independent measurement in semi-leptonic tagging¹⁾

$$\mathcal{B}$$
 (B⁺ $\rightarrow \tau^+ \nu$) = 1.79 ± 0.48 (stat+syst)

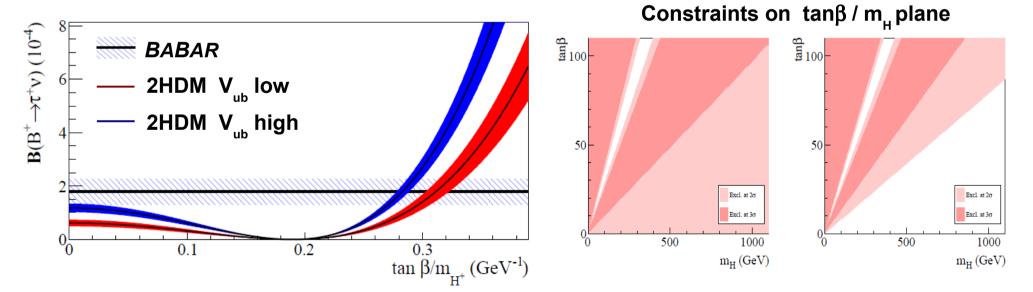
Recent result from Belle (ICHEP 2012)

$$\mathcal{B} \ (\text{B}^{\scriptscriptstyle +} \rightarrow \tau^{\scriptscriptstyle +} \nu) \ = 0.72^{\scriptscriptstyle +0.27} _{\scriptscriptstyle -0.25} \pm \ 0.11$$

Tension between BABAR / Belle

1) BABAR Collab., Phys.Rev. D81 (2010) 051101

Connection with $B \rightarrow \tau v$ decays


BABAR result

$$\mathcal{B} (B^+ \to \tau^+ \nu) = 1.79 \pm 0.48$$

SM Model predictions (depends on V_{ub})

$$\mathcal{B}_{\text{SM}} \; (\text{B}^+ \to \tau^+ \nu) \; = \; 0.62 \; \pm \; 0.12 \quad |V_{\text{ub}}| \; = \; 3.13 \; \pm \; 0.14 \; \pm \; 0.27 \quad \text{(M.F. Sevilla, PoS(EPS-HEP2011)155 (2011))} \\ \mathcal{B}_{\text{SM}} \; (\text{B}^+ \to \tau^+ \nu) \; = \; 1.18 \; \pm \; 0.16 \quad |V_{\text{ub}}| \; = \; 4.33 \; \pm \; 0.24 \; \pm \; 0.15 \quad \text{(BABAR Collab., arXiv:1112.0702)}$$

2HDM type-II predictions

Tension with the SM (1.6 σ / 2.4 σ) and constraints on the 2HDM type-II Preferred values of tan β / m $_{_{\! H}}$ different from preferred by B \to D $^{(\star)}$ $\tau \nu$