
Supersymmetry Basics

Basic SUSY References

- A Supersymmetry Primer, Steve Martin hep-ph/9709356
- Theory and Phenomenology of Sparticles,
 Manual Drees, Rohini Godbole, Probir Roy
 World Scientific
- Weak Scale Supersymmetry: From Superfields to Scattering Events, Howard Baer and Xerxes Tata Cambridge University Press

Supersymmetry is a New Symmetry

Symmetries that we know

- · Translations, rotations and boosts: Spacetime
- ·Isospin (approx): Internal symmetry ($\pi^{\pm,0}$, n,p)
- ·SM Gauge Invariance

Spacetime

·Global Baryon and Lepton number

OF NATURE	Exact	Broken	
Gauge	U(1) _{EM} , SU(3) _c	SU(2) x U(1) _Y	
Global	B, L	L_e , L_μ , L_τ	

Rotations, Boosts,

Translations

Supersymmetry is a New Symmetry

· An extension of the Poincare algebra

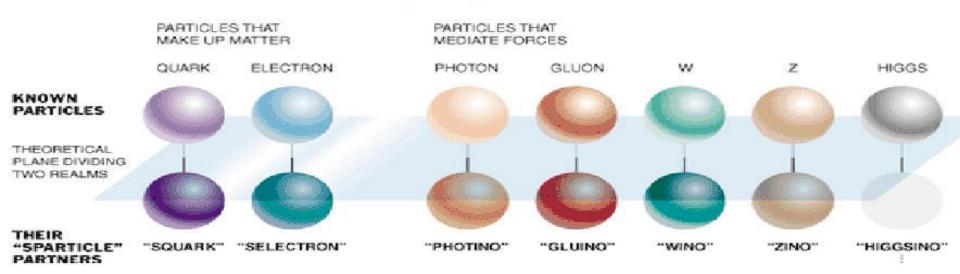
$$P_{\mu}$$
 (translations)
$$M_{\mu\nu}$$
 (rotations and boosts)
$$\{Q_{\alpha},Q_{\beta}\}=\sigma^{\mu}{}_{\alpha\beta}P_{\mu}$$
 Q_{α} (SUSY transformation)

• Supsersymmetry: a translation in Superspace Spacetime $(x_{\mu}) \rightarrow Superspace (x_{\mu}, \theta)$

SUSY transformation:

$$x_{\mu} \rightarrow x'_{\mu} = x_{\mu} + i/2 \ \bar{\epsilon} \gamma_{\mu} \ \theta$$

 $\Theta \rightarrow \theta' = \theta + \epsilon$


SSI 2012 Supersymmetry is a New Symmetry

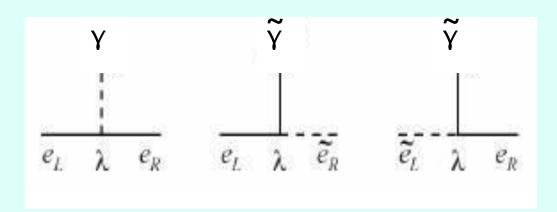
• Q_{α} is a fermionic charge that relates particles of different spins

$$Q_{\alpha} \mid \frac{Fermion}{Boson} = \mid \frac{Boson}{Fermion} >$$

 Every SM particle has a SUSY partner (of equal mass), identical quantum #'s except for spin

superparticles

<u>Superpartners</u>


· Translations:

Particle P at point $x \rightarrow$ Particle P at point x'

• Supersymmetry:

Particle P at point $x \rightarrow$ Particle \tilde{P} at point x

- P and P differ by spin ½: fermions ↔ bosons
- P and \tilde{P} are identical in all other ways (mass, couplings....)

Constructing a SUSY Model

<u>Isospin</u>

P n Multiplets of the symmetry transform into one another

N = nucleon field
Isospin Calculus
Isospin invariant action

Supersymmetry

S Ψ

\$\hat{S}\$ = Chiral Superfield Superfield Calculus SUSY invariant action

This leads to the Superpotential:

$$W = \mu H_1 H_2 - f^e_{ij} H_1 L_i \bar{E}_j - f^d_{ij} H_1 Q_i \bar{D}_j - f^u_{ij} Q_i H_2 \bar{U}_j$$

which describes all interactions

Counting Degrees of Freedom

- Bosonic d.o.f = Fermionic d.o.f
- SM Gauge Sector:
 SM gauge fields A_μ→ 2 independent polarizations
 Superpartner gauginos, λ,→ 2 d.o.f
 → Majorana spinors
- SM Fermion Sector:
 SM Fermions → 4 component Weyl fields
 Superpartner scalar → 2 scalar fields (Left and Right)
 for each SM fermion

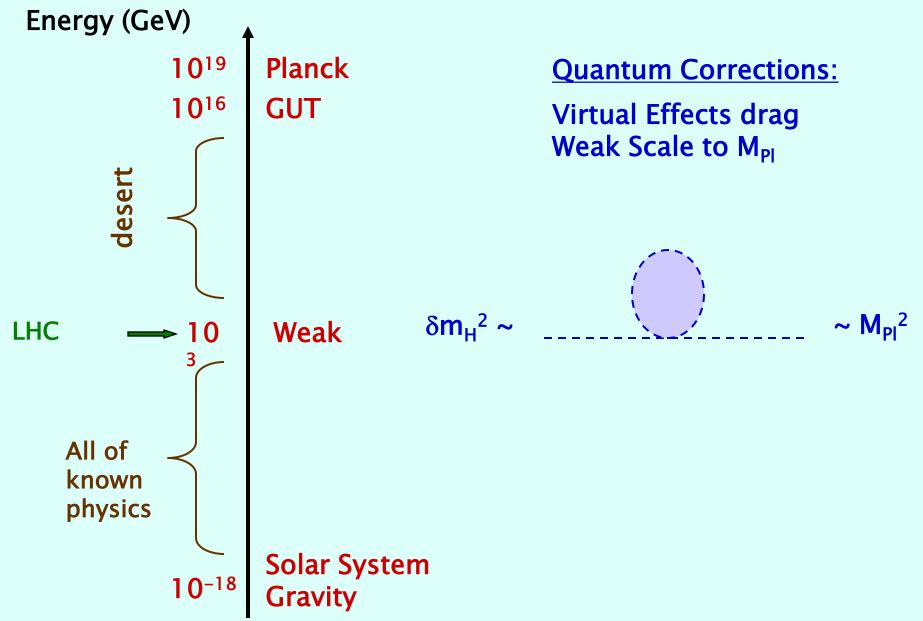
Supersymmetric Scale

Where is SUSY?

- We know 3 fundamental constants
 - Special Relativity: speed of light, c
 - General Relativity: Newton's constant G
 - Quantum Mechanics: Planck's constant, h
- Together, they form the Planck scale

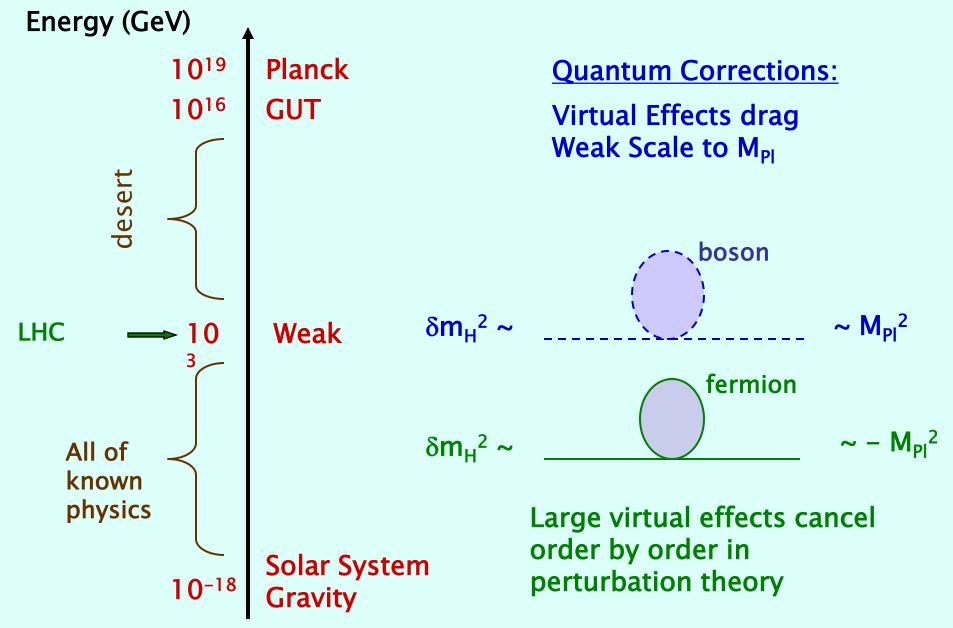
$$M_{\mathrm{Pl}} = \sqrt{\frac{hc}{G}} \approx 10^{19} \mathrm{\ GeV}$$

·SUSY scale can be anywhere, from 0 up to M_{Pl}!


Supersymmetric Scale: What we know

 SUSY is required by string theory to help relate quantum mechanics to gravity

 SUSY @ the EW scale provides Naturalness, Grand Unification, and a Dark Matter candidate



SSI 2012 The Hierarchy Problem

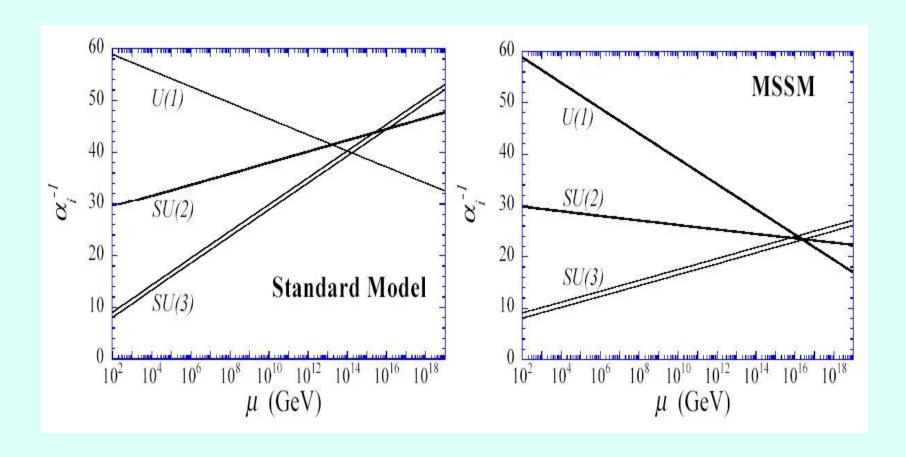
SSI 2012 The Hierarchy Problem: Supersymmetry

The Hierarchy Problem and Naturalness

In the SM, m_h is naturally $\sim \Lambda$ (= M_{Pl}) the highest energy scale

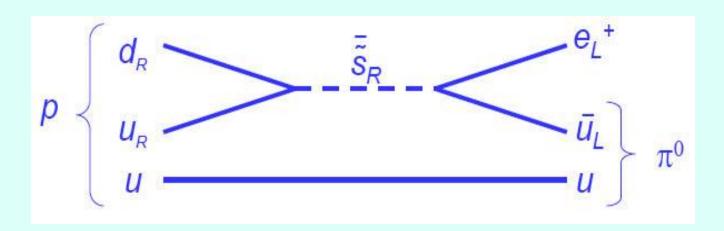
With $m_h = 125 \text{ GeV}$, $M_{Pl} = 10^{19} \text{ GeV}$,

→ requires cancellation in one part to 10³⁴!


Supersymmetry and Naturalness

- Dependence on Λ is softened to a logarithm
- SUSY solves the hierarchy problem, as long as sparticle masses are at the EW scale

Telescope to Gauge Unification


- Superpartners modify the scale dependence of couplings
- With TeV superpartners, the forces are unified!
- Unification scale ~ 10¹⁶ GeV

R-Parity: New Quantum Number

A BIG problem: proton decay occurs very rapidly!

- Introduce R-parity: $R_p = (-1)^{3(B-L)+2S}$
- · New multiplicative, conserved quantum number
 - P has $R_p = +1$; P has $R_p = -1$
 - Requires 2 superpartners in each interaction
- Consequence: the Lightest Supersymmetric Particle (LSP) is stable and cosmologically significant

R-Parity Violation

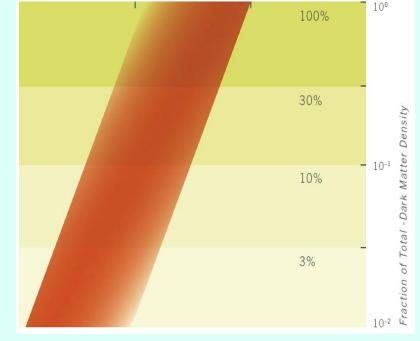
 RPV allows for new terms in the superpotential and thus allows for new interactions

$$\cdot \ \mathbf{W} = \lambda_{ijk} \mathbf{L}_i \mathbf{L}_j \mathbf{E}^{c}_{k} + \lambda'_{ijk} \mathbf{L}_i \mathbf{Q}_j \mathbf{D}^{c}_{k} + \lambda''_{ijk} \mathbf{U}^{c}_{i} \mathbf{D}^{c}_{j} \mathbf{D}^{c}_{k}$$

- Cannot simultaneously have lepton and baryon number violating terms!
- RPV leads to new collider search strategies and new limits. Strong restrictions on 1st and 2nd generation RPV couplings from flavor processes
- From here on, assume that R-Parity is conserved.

Neutral SUSY Particles: LSP Candidates

	U(1)	SU(2)	Up-type	Down-type		
Spin	M_1	M_2	μ	μ	$m_{ ilde{ ilde{ u}}}$	$m_{3/2}$
2	8.		3			G
						graviton
3/2	20	Noutr	olinoo: (w	., ., .,	.)	Ğ
9		neuii	aimos. {χ	$\chi_1, \chi_2, \chi_3, \chi_3$	(4)	gravitino
1	В	W ^o	1			
o						
1/2		\tilde{W}^{0}	$ ilde{H_u}$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H_{u}	H_d	v	
					sneutrino	


The LSP and Dark Matter

0.01

 The amount of dark matter relic density is inversely proportional to the annihilation cross section:

$$\Omega_{DM} \sim \langle \sigma_A v \rangle^{-1}$$
 $\sigma_A \sim \alpha^2 / m^2$

Remarkable "coincidence":

1.0

Mass of Dark Matter Particle from Supersymmetry (TeV)

HEPAP 2006 LHC/ILC Subpanel

 $\Omega_{\rm DM}$ ~ 0.1 for m ~ 100 GeV – 1 TeV!

Supersymmetry independently predicts particles with about the right density to be dark matter!

Higgs Doubling

- SUSY requires 2 Higgs doublets to cancel anomalies and to give mass to both up- and down-type particles in a gauge and SUSY invariant way
- Anomaly cancellation requires $\Sigma Y^3 = 0$, where Y is hypercharge and the sum is over all fermions
- SUSY adds an extra fermion with Y = -1

$$\left(\begin{array}{c}h^{\mathsf{O}}\\h^{-}\end{array}\right) \equiv \left(\begin{array}{c}h^{\mathsf{O}}_d\\h^{-}_d\end{array}\right) \Rightarrow \left(\begin{array}{c}\tilde{H}^{\mathsf{O}}_d\\\tilde{H}^{-}_d\end{array}\right)$$

• To cancel this anomaly, we add another Higgs doublet with Y = +1

$$\left(\begin{array}{c}h_u^+\\h_u^0\end{array}\right)\Rightarrow \left(\begin{array}{c}\tilde{H}_u^+\\\tilde{H}_u^0\end{array}\right)$$

Supersymmetry is Broken

- SUSY is not an exact symmetry: otherwise would have
 511 keV slectrons! This is excluded experimentally
- Terms that break SUSY w/o introducing new Λ^2 divergences are called soft-breaking terms
- We don't know how SUSY is broken, but soft SUSY breaking effects can be parameterized in the Lagrangian

$$\mathcal{L}_{soft} = -\frac{1}{2} (M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B})$$

$$-m_Q^2 \tilde{Q}^{\dagger} \tilde{Q} - m_U^2 \tilde{U}^{\dagger} \tilde{U} - m_D^2 \tilde{D}^{\dagger} \tilde{D} - m_L^2 \tilde{L}^{\dagger} \tilde{L} - m_E^2 \tilde{E}^{\dagger} \tilde{E}$$

$$-m_{H_1}^2 H_1^* H_1 - m_{H_2}^2 H_2^* H_2 - (\mu B H_1 H_2 + cc.)$$

$$-(\underline{A_u h_u \tilde{U} \tilde{Q} H_2 + A_d h_d \tilde{D} \tilde{Q} H_1 + A_l h_l \tilde{E} \tilde{L} H_1}) + c.c.$$

- A-terms result in L-R sfermion mixing, proportional to fermion Yukawa
- B-term is SUSY-breaking parameter

Parameterized SUSY Breaking

There are over 100 parameters!

Most of these are new flavor violation parameters or CP violating phases

Causes difficulties in the flavor sector Need some simplifying assumptions

There are many, many models of SUSY breaking.... Each with their own characteristics leading to some different signatures!

Supersymmetric Parameters

SUSY breaking introduces many unknown parameters. These are

- Masses for sleptons and squarks: m²_{fii}
- Masses for gauginos: M₁, M₂, M₃
- Trilinear scalar couplings (similar to Yukawa couplings): Af
- Mass for the 2 Higgsinos: μ H

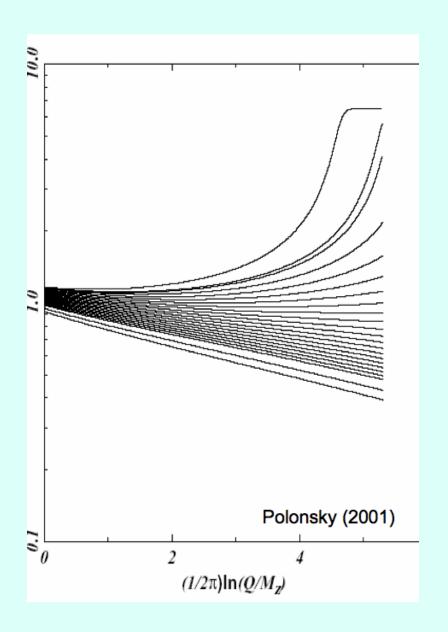
 _u H

 _d
- Masses for the 2 neutral Higgs bosons: B H_uH_d + m²_{Hu} |H_u|² + m²_{Hd} |H_d|²
- The 2 neutral Higgs bosons both contribute to electroweak symmetry breaking:

$$v^2 = (174 \text{ GeV})^2 \rightarrow v_u^2 + v_d^2 = (174 \text{ GeV})^2$$

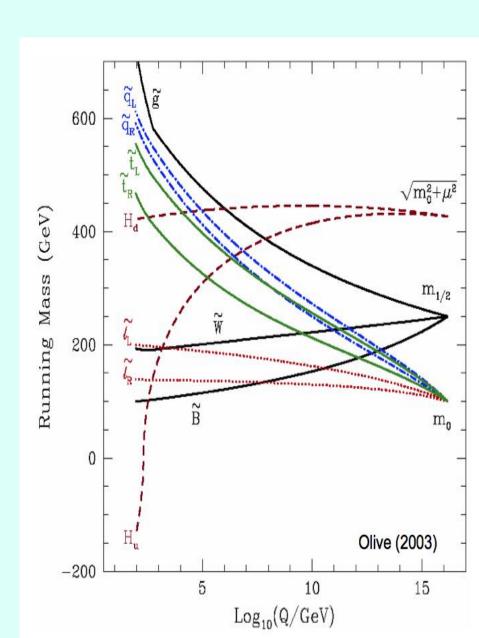
The extra degree of freedom is called $tan\beta = v_u/v_d$

Minimal Supersymmetric Standard Model

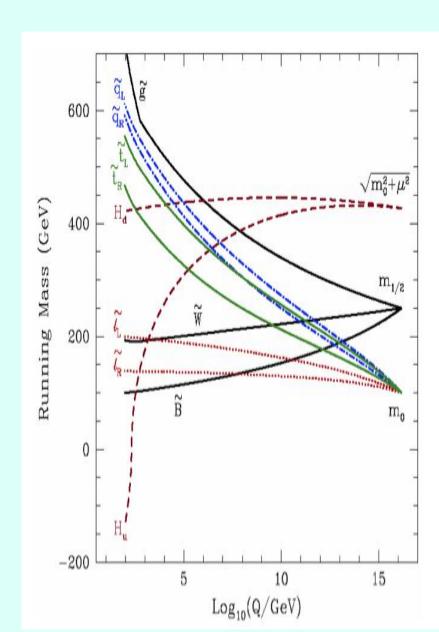

- Minimal number of new SUSY particles
- Contains R-parity conservation
 - Superpartners are produced in pairs
 - Heavier Superpartners decay to the Lightest
 - Lightest Superpartner is stable
- Soft SUSY-breaking implemented, with many possible models

Collider signatures dependent on R-Parity and on model of SUSY breaking

SUSY and the top-quark Mass


- Force unification suggests that extrapolation to very high scales is possible
- All parameters have scale dependence
- Top-quark yukawa has a quasi-fixed point near its Measured value
- SUSY predicts large top-quark mass!

Evolution of Scalar Masses


- How do scalar masses change with scale?
- Gauge couplings increase mass, Yukawa couplings decrease mass
- H_u is the lightest sparticle at the EW scale, by far!
- EWSB requires $m_{Hu}^2 < 0$
- SUSY "explains" why SU(2) is broken

Sneutrino and Higgsino Masses

- Lightest physical scalars are typically the right-handed sleptons
- Sneutrinos are typically heavier and are disfavored as LSP's

SUSY and Flavor Changing Neutral Currents

- FCNC's provide strong constraints on SUSY
- There are strong connections between LHC results and flavor physics

Generic amplitude for flavor process

trivial kinematical factors
$$A = A_0 \left[c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \right]$$
 (adimensional) effective couplings

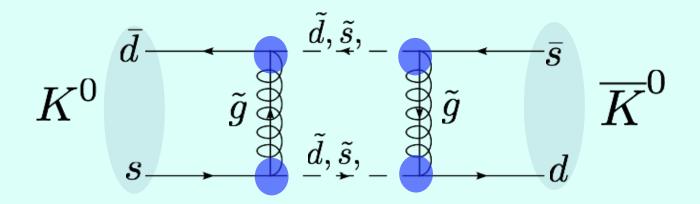
SUSY and Flavor Changing Neutral Currents

- FCNC's provide strong constraints on SUSY
- There are strong connections between LHC results and flavor physics

Generic amplitude for flavor process

Flavor Bounds on New Physics

$\Delta F=2$ processes


Operator	Bounds on Λ [TeV] $(C=1)$		Bounds on C ($\Lambda = 1 \mathrm{TeV}$)		Observables
Operator	Re	${ m Im}$	Re	$\overline{\mathrm{Im}}$	Observables
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^{2}	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	Δm_K ; ϵ_K
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^{3}	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^{3}	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\bar{b}_L \gamma^\mu d_L)^2$	5.1×10^{2}	9.3×10^{2}	3.3×10^{-6}	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.1×10^{2}	2.2×10^{2}	7.6×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	3.7×10^2	7.4×10^2	1.3×10^{-5}	3.0×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

trivial kinematical factors
$$A = A_0 \begin{bmatrix} c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \end{bmatrix}$$
 (adimensional) effective couplings

SUSY Effects in FCNC: Kaon Mixing

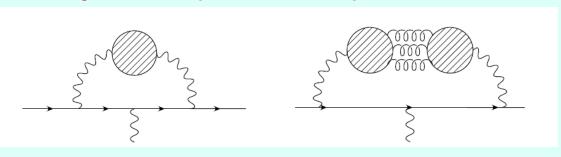
Rate exceeds experimental value by ~1000!

SUSY GIM mechanism invoked:

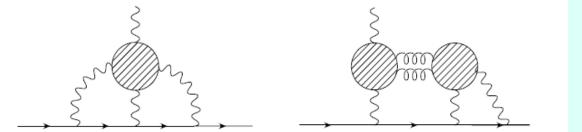
Rate ~ ΣV_{CKM} ($m_{fi}^2 - m_{fj}^2$)

One Solution: 1st 2 generation scalar particles are approximately degenerate!

Muon g-2 Anomaly


$$a_{\mu}=(g_{\mu}-2)/2$$

$$a_{\mu}(Expt) = 116592089(54)(33) \times 10^{-11}$$
 (BNL 821)
 $a_{\mu}(SM) = 116591802(42)(26)(02) \times 10^{-11}$

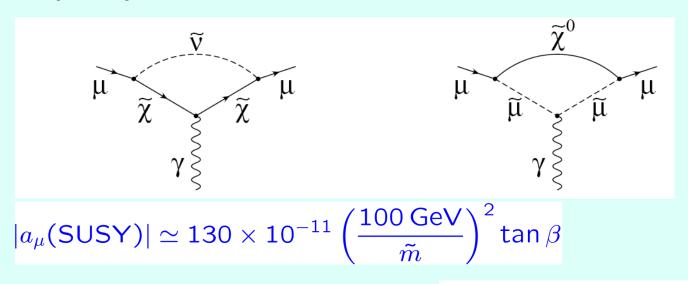

$$\Delta a_{\mu} = 287(80) \times 10^{-11}$$
 3.6 σ discrepancy!!

New FNAL exp't: reduce exp't error by factor of 2-3

Major theory uncertainty in hadronic vacuum polarization

$$a_{\mu}(HVP) = (692.3 \pm 4.2) \times 10^{-10}$$

= (701.5 \pm 4.7) \times 10^{-10}
(e⁺e⁻, \tau data)

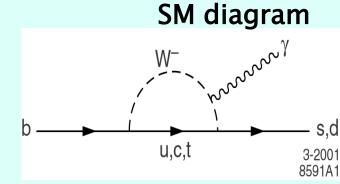

$$a_{\mu}(LbL) = 105(26) \times 10^{-11}$$

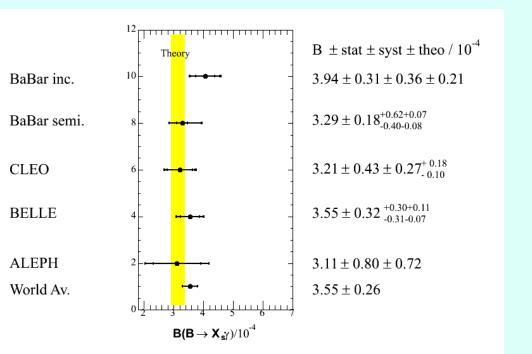
Lattice calculation underway!

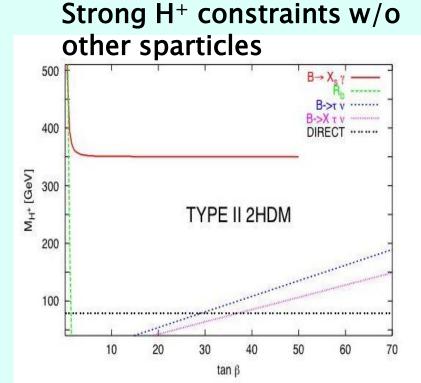


Muon g-2 Anomaly and New Physics

Supersymmetric Contributions

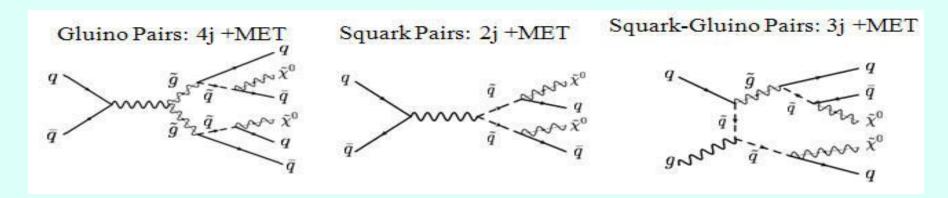

Large tanß preferred In constrained SUSY models

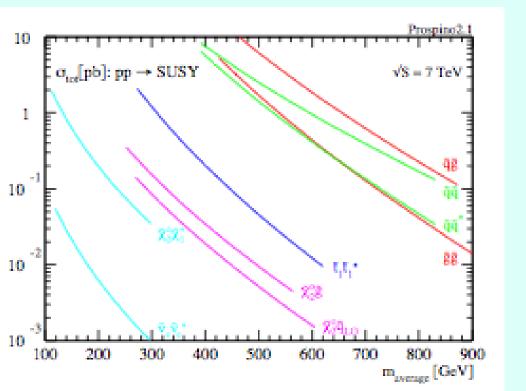




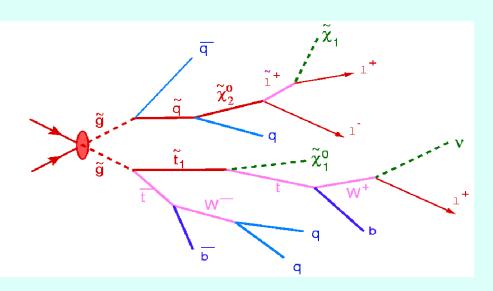
b →sγ in SUSY

- This rare decay gives strong constraints on SUSY contributions
- There are several SUSY contributions: charged Higgs, stop/chargino, gluino/sbottom being most important

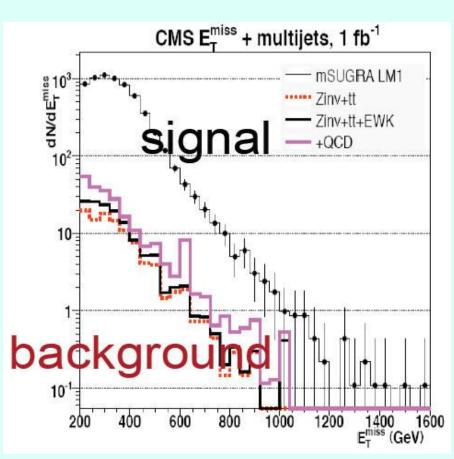




Supersymmetry at the LHC


Colored sparticles have strong production cross sections @ LHC

Decay to Jets + MET should give large MET signal over SM!

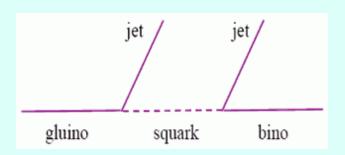


Supersymmetry at the LHC

SUSY discovery supossedly 'easy' at LHC

Short or long cascade decay Chains lead to large MET

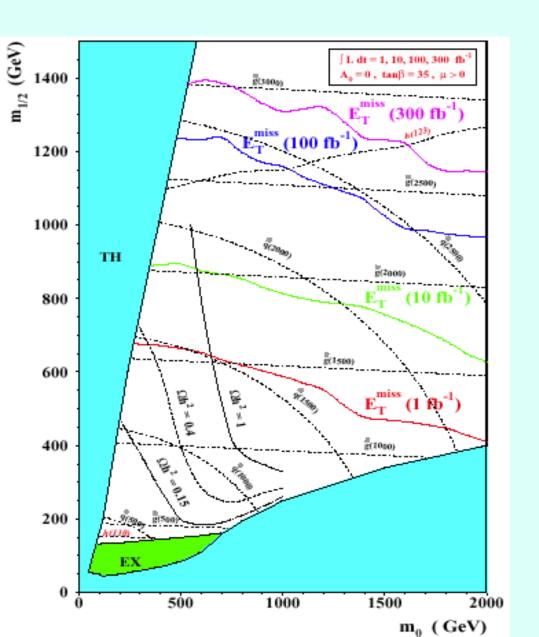
Cut: $E_T^{miss} > 300 \text{ GeV}$ MC before LHC run



Effects of compressed spectra: Tevatron

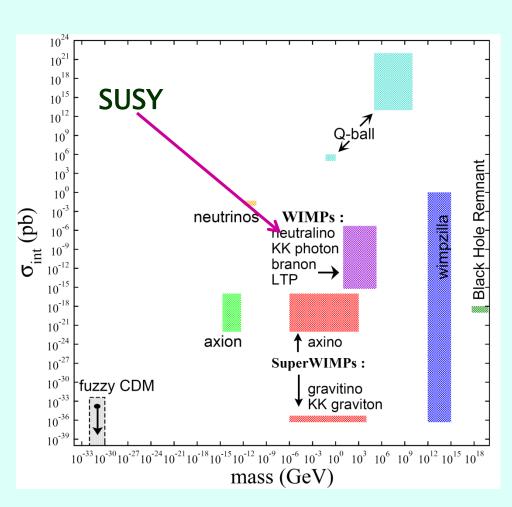
• Tevatron gluino/squark analyses performed for constant ratio m_{gluino} : $m_{Bino} \simeq 6:1$

Gluino-Bino mass ratio determines kinematics


Distribution of Gluino Masses

Berger, Gainer, JLH, Rizzo 0812.0980

LHC Supersymmetry Discovery Reach


mSUGRA – Model where gravity mediates SUSY breaking – 5 free parameters at high energies

Squark and Gluino mass reach is 2.5-3.0 TeV @ 300 fb⁻¹ at 14 TeV

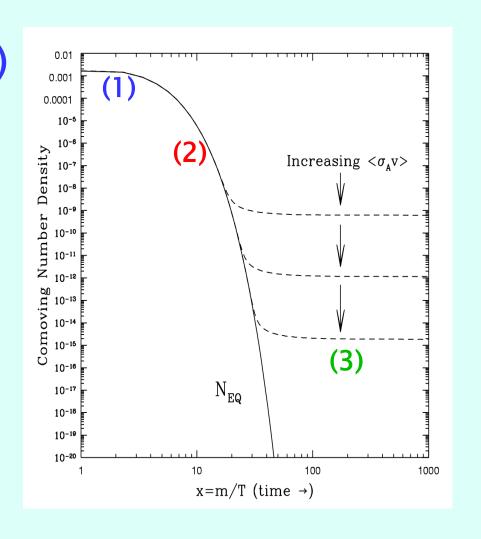
Some Dark Matter Candidates

- The observational constraints are no match for the creativity of theorists
- Masses and interaction strengths span many, many orders of magnitude, but not all candidates are equally motivated
- Weakly Interacting Massive Particle (WIMP)

HEPAP/AAAC DMSAG Subpanel (2007)

The WIMP 'Miracle'

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:


$$\chi\chi \leftrightarrow ff$$

(2) Universe cools:

$$\chi\chi \neq ff$$

(3) $\chi \square s$ "freeze out":

$$\chi\chi \neq ff$$

Techniques to observe Dark Matter

 $\chi\chi\to$ photons, positrons , anti-protons.... 'in the sky' <u>right now</u> may be seen by FERMI & other experiments

 $\chi N \rightarrow \chi N$ (elastic) scattering may be detected on earth in deep underground experiments

If χ is really a WIMP it may be directly produced at the LHC!

Of course, χ does not come by itself in any new physics model & there is usually a significant accompanying edifice of other interesting particles & interactions with many other observational predictions

So this general picture can be tested in many ways....

Two MSSM Model Frameworks

- The constrained MSSM (CMSSM)
 - Based on mSUGRA: Gravity mediated SUSY breaking
 - Common masses & couplings at the GUT scale
 - m_0 , $m_{1/2}$, A_0 , $tan\beta = v_2/v_1$, sign μ

- The phenomenological MSSM (pMSSM)
 - 19 real, weak-scale parameters scalars:

```
m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}, m_{u_3}, m_{d_3}, m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3} gauginos: M_1, M_2, M_3
```

tri-linear couplings: A_b , A_t , A_τ Higgs/Higgsino: μ , M_A , tan β

Tomorrow's lecture will be based on these 2 models

Lecture 1 Summary

- Supersymmetry is a new symmetry allowed by Nature
- Contains many new parameters!
- Dimensionless couplings are fixed
- Dimensionful parameters are allowed (soft breaking), but should be at the EW scale

Analogy	Soap Bubble	SM
Large Parameter	Length L Height H	M _{Pl}
Small Parameter	L - H	m _h
Symmetry explanation	Rotational invariance	SUSY
Symmetry breaking	Gravity	M _{SUSY}
Natural if	Gravity weak	M _{SUSY} small