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Outline

• Is it a Higgs or an impostor? Does it 
participate in EWSB?

• If it is an Higgs, is it fundamental or 
composite?

• Implications for specific models?

• ...
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Invisible Higgs width
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Invisible Width
• Testing invisible Higgs 

decays is notoriously hard

• total width of the Higgs is 
too small to be measured

• Under assumptions of 
narrow width (and 
neglecting light quark 
contrib’), absolute Γh→gg 
can be extracted

• Indirect constrain on 
BR(H→inv)

Giardino, Kannike, Raidal, 
Strumia arXiv:1207.1347

BR(inv.) < 0.2 - 0.6
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Invisible Width
• Relevant for “Higgs portal” 

models (i.e. new physics 
coupled to |H|2)

• models of Dark Matter 
coupled thru Higgs portal 
predicts large Higgs-DM-
DM couplings

• if mDM<mH/2 large invisible 
width→ BR can be O(50%)

FIG. 2. The profile likelihood of the spin-independent cross section σSI
χp(0) for the SZ model

projected onto the mχ axis. The XENON100 limits [9] are overlaid for comparison. The projected

XENON-1T sensitivity is also shown.

correspondingly, in order to be consistent with WMAP data. On the other hand, when

mχ > mW , the χχ → W+W− channel dominates the annihilation cross section [2, 3, 25].

Therefore, we can see from the figure that in the 1 and 2 σ C.L. bands of the horizontal

branch the allowed ρ is roughly proportional to m2
χ (see Eq.(34) at the Appendix).

In Fig. 2, we show the profile likelihood on mχ - σSI
χp(0) panel against the experimental

90% C.L. upper limit from XENON100. Clearly, the XENON100 data is only able to rule

out 50GeV ! mχ ! 100GeV. Current DM direct detection cannot constrain most of the

parameters. On the other hand, the Higgs resonance region and most of the horizontal band

can be tested in the future by XENON-1T (see the dashed line in Fig. 2).

Other than the Higgs resonance region, the WMAP constraint dominates the likelihood

function as shown in Fig. (2), and therefore the largest likelihood of XENON100 only

occurs at s " b. Nevertheless, it is easier to satisfy the relic density constraint in the Higgs

resonance region, and therefore the largest likelihood of XENON100 in the Higgs resonance
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• new Higgs data currently mild constrain, will improve 
in the future
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Effects of new particles
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Simplified Models for top & W partners
Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718
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Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

7



Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

• simplified model → assume that only the lightest 
partner is relevant for BR’s of the Higgs

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

7



Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

• simplified model → assume that only the lightest 
partner is relevant for BR’s of the Higgs

• Top: scalar or fermionic partners

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

7



Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

• simplified model → assume that only the lightest 
partner is relevant for BR’s of the Higgs

• Top: scalar or fermionic partners

• W: vector partner (W’)

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

7



Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

• simplified model → assume that only the lightest 
partner is relevant for BR’s of the Higgs

• Top: scalar or fermionic partners

• W: vector partner (W’)

4.1 Single Partner Models

As a first exercise, consider a class of simplified models with only one new degree of freedom

coupled only to the Higgs boson. The new degree of freedom, below referred to as the

partner, could be a scalar S, a Dirac fermion f , or a vector boson ⇢, carrying charge and/or

color, and coupled to the Higgs as in Eq. (2.3),

L = �cs
2m2

s

v
hS†S � cf

mf

v
hf̄f + c⇢

2m2
⇢

v
h⇢†µ⇢µ . (4.1)

Here appropriate index contractions are implicit for colored partners. For ci = 1 the mass of

the partner originates completely from electroweak symmetry breaking with a single Higgs,

but we do not require this to be the case in general. For simplicity we assume in this

subsection that the partner does not mix with the SM fields. This can be arranged, for

example, by imposing a conserved Z2 symmetry. We relax this assumption in the subsections

below.

Integrating out the partner a↵ects the dimension-5 Higgs couplings to gluons and photons

cg and c�, while keeping the remaining parameter in (2.1) at the SM values cV = cb = cc =

c⌧ = 1. The ratio cg/c� is determined by the electric charge and the color representation of

the partner. As an illustration we present our results for the following three cases:

• Scalar top partner. Color triplet, charge 2/3 scalar, contributing as

�cg =
cs
4
As(m

2
h/4m

2
s) , (4.2)

�c� =
1

18
csAs(m

2
h/4m

2
s) . (4.3)

The partner exactly cancels the quadratic divergence from the top quark for

cs =
2m2

t

m2
s

. (4.4)

• Fermionic top partner. Color triplet, charge 2/3 fermion, contributing as

�cg = cfAf (m
2
h/4m

2
f ) , (4.5)

�c� =
2

9
cfAf (m

2
h/4m

2
f ) . (4.6)
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Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

7



Simplified Models for top & W partners

• Check in a “simplified model” approach the effect on 
the Higgs properties of top and vector boson 
“partners” (necessary for hierarchy problem)

• simplified model → assume that only the lightest 
partner is relevant for BR’s of the Higgs

• Top: scalar or fermionic partners

• W: vector partner (W’)

4.1 Single Partner Models

As a first exercise, consider a class of simplified models with only one new degree of freedom

coupled only to the Higgs boson. The new degree of freedom, below referred to as the

partner, could be a scalar S, a Dirac fermion f , or a vector boson ⇢, carrying charge and/or

color, and coupled to the Higgs as in Eq. (2.3),

L = �cs
2m2

s

v
hS†S � cf

mf

v
hf̄f + c⇢

2m2
⇢

v
h⇢†µ⇢µ . (4.1)

Here appropriate index contractions are implicit for colored partners. For ci = 1 the mass of

the partner originates completely from electroweak symmetry breaking with a single Higgs,

but we do not require this to be the case in general. For simplicity we assume in this

subsection that the partner does not mix with the SM fields. This can be arranged, for

example, by imposing a conserved Z2 symmetry. We relax this assumption in the subsections

below.

Integrating out the partner a↵ects the dimension-5 Higgs couplings to gluons and photons

cg and c�, while keeping the remaining parameter in (2.1) at the SM values cV = cb = cc =

c⌧ = 1. The ratio cg/c� is determined by the electric charge and the color representation of

the partner. As an illustration we present our results for the following three cases:

• Scalar top partner. Color triplet, charge 2/3 scalar, contributing as

�cg =
cs
4
As(m

2
h/4m

2
s) , (4.2)

�c� =
1

18
csAs(m

2
h/4m

2
s) . (4.3)

The partner exactly cancels the quadratic divergence from the top quark for

cs =
2m2

t

m2
s

. (4.4)

• Fermionic top partner. Color triplet, charge 2/3 fermion, contributing as

�cg = cfAf (m
2
h/4m

2
f ) , (4.5)

�c� =
2

9
cfAf (m

2
h/4m

2
f ) . (4.6)

13

c’s parameterize the amount of mass coming from EWSB

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718
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Simplified Models for top & W partners
Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718
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Figure 3: Best fit regions in the ci-mi plane, assuming mh = 125 GeV for the scalar top partner

(top-left), fermionic top partner (top-right) and vector W -partner (bottom-left). Shown are

68% (darker green) and 95% CL (lighter green) regions. The dashed curves are for constant Rincl
�� ,

Eq. (2.17), while the red curve is where a single partner is improving the naturalness of the SM,

Eqs. (4.4), (4.7), (4.10). The bottom-right image shows the constraints for mh = 125 GeV, for

top partner models, i.e. �c� = 2/9�cg. The three bands show the 1� allowed regions for RV H
bb ,

Rincl.
�� , and Rincl.

ZZ channels. The three curves show the theoretical predictions as a function of �cg for

each channel. Only 3 channels are shown, but all channels are included. The green shaded region

shows the 95% CL experimental preferred region.

14

top and W 
partners can 

accommodate 
increased h→γγ

8



Simplified Models for top & W partners
Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

1

1

1

1.5

1.5

1.5

2

-8 -6 -4 -2 0 2 4 6
60

80

100

120

140

160

180

200

cs

m
s
@Ge

V
D

Scalar Top Partner

1

1

1

1.5

1.5

1.5

2

-2 -1 0 1 2
60

80

100

120

140

160

180

200

c f

m
f
@Ge

V
D

Fermion Top Partner

1

1

1.5

1.5

2

2

-3 -2 -1 0 1 2
60

80

100

120

140

160

180

200

cr

m
r
@Ge

V
D

W'

incl. hÆ VV*

incl. hÆ gg
Vh hÆ bb
dijet hÆ gg

incl. hÆ VV*

incl. hÆ gg
Vh hÆ bb
dijet hÆ gg

95% Preferred95% Preferred

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

dcg

R
=
s
¥
B
R
êHs¥

B
R
L SM

Top Partner Hdcg = 9ê2 dcgL

Figure 3: Best fit regions in the ci-mi plane, assuming mh = 125 GeV for the scalar top partner

(top-left), fermionic top partner (top-right) and vector W -partner (bottom-left). Shown are

68% (darker green) and 95% CL (lighter green) regions. The dashed curves are for constant Rincl
�� ,

Eq. (2.17), while the red curve is where a single partner is improving the naturalness of the SM,

Eqs. (4.4), (4.7), (4.10). The bottom-right image shows the constraints for mh = 125 GeV, for

top partner models, i.e. �c� = 2/9�cg. The three bands show the 1� allowed regions for RV H
bb ,
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�� , and Rincl.

ZZ channels. The three curves show the theoretical predictions as a function of �cg for

each channel. Only 3 channels are shown, but all channels are included. The green shaded region

shows the 95% CL experimental preferred region.
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top and W 
partners can 

accommodate 
increased h→γγ

scalar top (1stop 
only) either fix 

naturalness or fix 
the BR’s
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top and W 
partners can 

accommodate 
increased h→γγ

scalar top (1stop 
only) either fix 

naturalness or fix 
the BR’s

need 2 stops (SUSY)
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Stops in SUSY may be able to 
fix Higgs BR’s, even at 
relatively light masses
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Figure 7: Left: The favored region at 68% CL (Darker) and 95% CL (Lighter) for mh = 125 GeV

in the two scalar model, with mt̃2
� mt̃1

, and assuming the decoupling limit of the 2HDM. The

dashed lines show contours of constant R�� . Right: Allowed regions at 95% CL obtained for the

2HDM + two stops model. The di↵erent colors correspond to di↵erent values of tan�. The regions

are: tan� = 5 (yellow), tan� = 10 (green), tan� = 25 (blue) and tan� = 50 (purple). The best

fit points corresponds approximately to the decoupling limit.

In Fig. 6 we show the constraints in the ↵-tan � plane. In accordance with current direct

bounds [27], we assume that the charged Higgs is heavy enough so as to contribute negligibly

to c�, and tan � & 0.3, so that the top Yukawa coupling does not run to a Landau pole at

µ ⇠ TeV. The best fit approximately corresponds to the decoupling limit ↵ = � � ⇡/2

(tan↵ = � cot �) where all couplings are SM-like, in particular cV ⇡ 1. The minimum �2 is

roughly the same as in the SM, ��2 = �2
min ��2

SM ' 0. Another favored region is for ↵ > 0,

where cV is still close to 1 and the sign of cb is flipped.

5.2 Simplified MSSM

The next example we consider is a simplified model of the MSSM: two Higgs doublet plus 2

stops defined as scalars with the same color and charge as the top quark. The Higgs doublets

are defined as in the previous section, but now ↵ 2 (�⇡/2, 0). Consider the stops t̃,t̃c with

21

from M.Carena’s talk:
stops fail to fix the BR’s 

AND raise the Higgs mass

SUSY (again…)

light stops are interesting for 
naturalness, so have a look at a 

more general scenario...
9



SUSY & the weak scale
• SUSY provides a nice framework for stabilizing the ElectroWeak scale

• more general than the MSSM

• amount of cancelation has not been directly probed yet! 
(experimental question) 

• interesting to look first for those cases where this cancelation is not 
strong (naturalness)

of naturalness can be reduced to a one-dimensional problem as in the Standard Model

V = m2
H |H|2 + �|H|4 (1)

where m2
H will be in general a linear combination of the various masses of the Higgs fields.

Each contribution to �m2
H to the Higgs mass naturally should be of the order or less than m2

H

itself. Therefore �m2
H/m2

H should not be large. By using m2
h = �2m2

H one usually defines

as a measure of fine-tuning
Barbieri:1987fn,Kitano:2006gv
[? ? ]

� ⌘ 2�m2
H

m2
h

(2)

where m2
h is the Higgs boson physical mass in the decoupling regime, or some linear com-

bination of the physical neutral Higgs bosons in fully mixed scenarios. As it is well known,

increasing the physical Higgs boson mass (i.e.the quartic coupling) alleviates the fine-tuning.

In a SUSY theory at tree level m2
H will include the µ term. Given the size of the top

mass, the soft mass of Higgs field coupling to the up-type quarks mHu is (quite model

independently) also among them. Whether the soft mass for the down-type Higgs, mHd
or

other soft terms in an extended Higgs sector should be as light as µ and mHu is instead a

model dependent question, and a heavier mHd
can even lead to improvements

Dine:1997qj,Csaki:2008sr
[? ? ]. The

phenomenological key point for direct searches for SUSY particles is therefore the lightness

of the Higgsinos since their mass is directly controlled by µ

µ <⇠ 190 GeV
✓

mh

120 GeV

◆ 
��1

20%

!�1/2

(3)

At loop level there are additional constraints. The Higgs potential in a SUSY theory

is corrected by both gauge and Yukawa interactions, the largest contribution coming from

the top-stop loop. In extensions of the MSSM there will also be corrections coming from

Higgs self-interactions, that can be important for large values of the couplings. The radiative

corrections to m2
H proportional to the top Yukawa coupling read

�m2
H |stop = � 3

8⇡2
y2
t

⇣
m2

U3
+ m2

Q3
+ |At|2

⌘
log

✓
⇤

TeV

◆
(4) eq:der1

at one loop in the leading logarithmic approximation, that is su�cient for the current dis-

cussion
?
[? ]. Here ⇤ denotes the scale at which SUSY breaking e↵ects are mediated to the

Supersymmetric SM. Since the soft parameters m2
U3,Q3

, At control the stop spectrum, as it

5

is well known, the requirement of a natural Higgs potential sets an upper bound on the stop

masses. In particular one has

q
m2

t̃1
+ m2

t̃2
<⇠ 600 GeV

sin �

(1 + x2
t )1/2

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(5)

where we defined xt = At/
q

m2
t̃1

+ m2
t̃2
. Eq.

eq:ft-stopeq:ft-stop
?? poses a bound on the heaviest stop mass.

Moreover, for a fixed Higgs boson mass, a hierarchical stop spectrum induced by a large o↵-

diagonal term At tend to worsen the fine-tuning due to the direct presence of At in the r.h.s.

of eq.
eq:stop-1loopeq:stop-1loop
??. All the other radiative contributions to the Higgs potential from the other SM

particles pose much weaker bounds on the supersymmetric spectrum. The only exception is

the gluino that induces a large mass correction to the top squarks at 1-loop and feeds at two

loops in the Higgs potential. One finds, in the LL approximation

�m2
H |gluino = � 2

⇡2
y2
t

✓
↵s

⇡

◆
|M3|2 log2

✓
⇤

TeV

◆
(6)

where M3 is the gluino mass and we have neglected the mixed AtM3 contributions that can

be relevant for large A-terms. From the previous equation the gluino mass is bounded from

above by naturalness to be

M3
<⇠ 890 GeV sin �

 
log (⇤/ TeV)

3

!�1 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(7)

In case of Dirac gauginos there is only one power of the logarithm1 in eq.
eq:gluinoeq:gluino
??, leading to a

bound get ameliorated by a factor of (log (⇤/ TeV))1/2, i.e., roughly 1.4 TeV for the choice

of parameters above.

For completeness, we give also the upper bounds on the other gauginos:

(M1, M2) <⇠ (2.7 TeV, 870 GeV)

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(8)

the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is in the 5 � 10 TeV range.

MP: maybe move this paragraph in the model implication section.

1 The other logarithm gets traded into a logarithm of the ratio of soft masses. We assume it to be O(1),

but in principle can be tuned to provide further suppression.

6
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• What are the minimal requirements for a "natural" weak-scale SUSY?

• (some of the) superpartners have to be light enough:                 

• 2 light stops

• 1 light “left-handed” sbottom (required to be near the stops by 
weak isospin) 

• light higgsinos, i.e. 2 neutralinos and 1 chargino

• a not-too-heavy gluino

What about numbers?Rest could be decoupled...

• if  low scale mediation, a light gravitino
• if WIMP DM, another neutralino 
(bino?)

Model dep’:

11



difficult to make sharp quantitative statements (just a guidance): 
what is “natural”?  10-9=1? 100-99=1? 1000-999=1? 1 part in 104? …

12



difficult to make sharp quantitative statements (just a guidance): 
what is “natural”?  10-9=1? 100-99=1? 1000-999=1? 1 part in 104? …

(e.g. Kitano & Nomura 2006)
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In case of Dirac gauginos there is only one power of the logarithm1 in eq.
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??, leading to a
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the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is in the 5 � 10 TeV range.

MP: maybe move this paragraph in the model implication section.

1 The other logarithm gets traded into a logarithm of the ratio of soft masses. We assume it to be O(1),

but in principle can be tuned to provide further suppression.
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where m2
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Each contribution to �m2
H to the Higgs mass naturally should be of the order or less than m2
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itself. Therefore �m2
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H should not be large. By using m2
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H one usually defines
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where m2
h is the Higgs boson physical mass in the decoupling regime, or some linear com-

bination of the physical neutral Higgs bosons in fully mixed scenarios. As it is well known,

increasing the physical Higgs boson mass (i.e.the quartic coupling) alleviates the fine-tuning.

In a SUSY theory at tree level m2
H will include the µ term. Given the size of the top

mass, the soft mass of Higgs field coupling to the up-type quarks mHu is (quite model

independently) also among them. Whether the soft mass for the down-type Higgs, mHd
or

other soft terms in an extended Higgs sector should be as light as µ and mHu is instead a

model dependent question, and a heavier mHd
can even lead to improvements

Dine:1997qj,Csaki:2008sr
[? ? ]. The

phenomenological key point for direct searches for SUSY particles is therefore the lightness

of the Higgsinos since their mass is directly controlled by µ
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the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
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i ) 6= 0, and it is in the 5 � 10 TeV range.
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where we defined xt = At/
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. Eq.

eq:ft-stopeq:ft-stop
?? poses a bound on the heaviest stop mass.

Moreover, for a fixed Higgs boson mass, a hierarchical stop spectrum induced by a large o↵-

diagonal term At tend to worsen the fine-tuning due to the direct presence of At in the r.h.s.

of eq.
eq:stop-1loopeq:stop-1loop
??. All the other radiative contributions to the Higgs potential from the other SM

particles pose much weaker bounds on the supersymmetric spectrum. The only exception is

the gluino that induces a large mass correction to the top squarks at 1-loop and feeds at two

loops in the Higgs potential. One finds, in the LL approximation
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where M3 is the gluino mass and we have neglected the mixed AtM3 contributions that can

be relevant for large A-terms. From the previous equation the gluino mass is bounded from
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In case of Dirac gauginos there is only one power of the logarithm1 in eq.
eq:gluinoeq:gluino
??, leading to a

bound get ameliorated by a factor of (log (⇤/ TeV))1/2, i.e., roughly 1.4 TeV for the choice

of parameters above.

For completeness, we give also the upper bounds on the other gauginos:

(M1, M2) <⇠ (2.7 TeV, 870 GeV)
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the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is in the 5 � 10 TeV range.

MP: maybe move this paragraph in the model implication section.

1 The other logarithm gets traded into a logarithm of the ratio of soft masses. We assume it to be O(1),

but in principle can be tuned to provide further suppression.
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difficult to make sharp quantitative statements (just a guidance): 
what is “natural”?  10-9=1? 100-99=1? 1000-999=1? 1 part in 104? …

Less problems w/ low scale 
mediation

bound ameliorated if physics 
beyond the MSSM increase the 

Higgs mass (e.g. NMSSM, …)

Higgsinos: 

of naturalness can be reduced to a one-dimensional problem as in the Standard Model

V = m2
H |H|2 + �|H|4 (1)

where m2
H will be in general a linear combination of the various masses of the Higgs fields.

Each contribution to �m2
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itself. Therefore �m2
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H should not be large. By using m2
h = �2m2
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where m2
h is the Higgs boson physical mass in the decoupling regime, or some linear com-
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mass, the soft mass of Higgs field coupling to the up-type quarks mHu is (quite model

independently) also among them. Whether the soft mass for the down-type Higgs, mHd
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?
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In case of Dirac gauginos there is only one power of the logarithm1 in eq.
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the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is in the 5 � 10 TeV range.
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Natural SUSY

• constraints from Higgs measurements, b→sγ, direct 
searches

• assumes other source for Higgs mass (red region would 
be required in MSSM), decoupling limit and that addtl 
source for the Higgs mass does not modify the BR’s
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FIG. 6: The overlay of the Higgs mass condition mh = 125 ± 2 GeV (in red/darker shaded region) and

the best fit space (colour convention the same as in previous figures). Also shown are labeled contours of

constant fine-tuning (solid black) for a UV cutoff ⇤ = 10TeV. The same contours are shown (dashed grey)

for ⇤ = 50 TeV. In the no-mixing case, the Higgs mass constraint cannot be accommodated in minimal

scenarios: no Higgs mass band is present in these plots.

the gluino mass, which we have chosen to be 1.1 TeV in this figure.16 For non-zero stop mixing,

larger values of the gluino mass tend to lower mh and therefore require larger values of the stop

masses [82]. We see in Fig. 6, left plot, that the best-fit region with sub-TeV stop masses and zero

mixing is not consistent with the Higgs mass condition, as was to be expected. Larger stop masses

with large mixing can however produce the observed Higgs mass value (Fig. 6, middle and right

plot) in exceptional regions of parameter space (or when a worse fit is considered), although the

degree of fine-tuning in these parameter regions is a concern.

It is well known that physics beyond the minimal supersymmetric version of the SM can easily

16 We take the other sfermion states to be ⇠ 2 TeV in this analysis, however the Higgs mass band is insensitive to the
particular mass values of these states for tan � ⇠ 10 and sfermion masses in the TeV range.

Espinosa, Grojean, Sanz, Trott 
arXiv:1207.7355
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Higgs & gμ-2
• Enhanced γγ rate in the MSSM can be achieved with 

light mixed staus (see M.Carena’s talk)

• staus also contribute to gμ-2 of the muon

• contribution is in the right direction and of the right 
size → correlation between the two effects

Giudice, Paradisi, 
Strumia 1207.6393

Figure 3: Left: Lepton-flavor universality breaking e↵ects in ⌧ decays described by the quantity

�r`/⌧ , see eq. (26), as a function of �(h ! ��) normalized to its SM value. Right: �aµ vs. �a⌧ .

Red points correspond to the currently favored region for �(h ! ��).

Here (Rµ/⌧ )
SM

= �(⌧ ! e⌫⌫̄)
SM

/�(µ ! e⌫⌫̄)
SM

and (Rµ/⌧ ) = �(⌧ ! e⌫⌫̄)/�(µ ! e⌫⌫̄) so

that �rµ/⌧ 6= 0 signals the presence of new physics violating lepton universality. At tree

level, gauge invariance guarantees lepton flavor universality of the W interactions. This

universality is maintained to all orders for exact SU(2) gauge symmetry, while it is broken

in general at the loop level after EW breaking. In the e↵ective field theory language, this

corresponds to e↵ects induced, after EW symmetry breaking, by gauge invariant dimension-

six operators such as (L̄L�
µLL)(H†⌧aDµH).

In order to describe the above e↵ects, it is convenient to consider the following e↵ective

Lagrangian

L
e↵

= `LZ
`
Li 6@ `L + ⌫LZ

⌫
Li 6@ ⌫L � gp

2
W�

µ `L�
µZW

L ⌫L + h.c. , (27)

where the Za matrices can be written as

(Za)ij = �ij + (⌘a)ij a = ⌫, `,W . (28)

The Hermiticity of the Lagrangian ensures that (⌘`,⌫)† = ⌘`,⌫ , while ⌘W is general. After

rescaling the lepton fields to make their kinetic terms canonical

⌫L !
✓
1� 1

2
⌘⌫L

◆
⌫L, `L !

✓
1� 1

2
⌘`L

◆
`L , (29)
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Model building 
enhanced rates

16



Enhanced h→VV?

What if with more data gVVh 

remain larger than the SM?
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Enhanced h→VV?
• How can you enhance a?

Introduction. The LHC is on its to way to discovering a Higgs boson and measuring

or constraining its couplings to other Standard Model (SM) particles. The coupling to W

and Z bosons are particularly important because they control the high-energy behavior of

the scattering amplitude of longitudinally polarized electroweak gauge bosons. Theoretical

constraints on that coupling were previously discussed in Ref. [1] in the framework of Strongly

Interacting Light Higgs (SILH) [2], where an approximately elementary Higgs doublet arises

as a pseudo-Goldstone boson in a strongly interacting sector. In this letter we revisit this

question, without making reference to an elementary Higgs doublet field. By the Higgs boson

we simply mean any light neutral scalar particle with custodial isospin 0 and a significant

coupling to W and Z.

Parametrizing the Higgs coupling to W and Z as1

LhV V = a
h

v

�
2m2

WW+
µ W�

µ +m2
ZZµZµ

�
(1)

we will see that there is a sum rule relating the coe�cient a to a linear combination of

the total cross sections in di↵erent isospin channels of longitudinal electroweak gauge boson

scattering:

1� a2 =
v2

6⇡

Z 1

0

ds

s

�
2�tot

I=0(s) + 3�tot
I=1(s)� 5�tot

I=2(s)
�
. (2)

The equality holds for a light Higgs boson and in the limit of vanishing electroweak gauge

couplings, g, g0 ! 0. The SM predicts a = 1. Intriguingly, CMS recently reported an excess

of Higgs-like events in the diphoton channel produced in association with 2 forward jets

[3]. This may possibly be interpreted as an enhancement of the vector-boson-fusion Higgs

production mode and therefore a hint for a > 1. From Eq. (2) it is clear that the Higgs

coupling to W and Z exceeding the SM value implies that the cross section in the isospin-2

channel dominates over the remaining 2 channels, at least for a certain range of invariant

mass s. The simplest way to satisfy the sum rule with a > 1 is by introducing a resonance

in the isospin-2 channel.

Derivation of the sum rule. Below we derive Eq. (2). We will use the equivalence

theorem, where the scattering amplitudes of W+
L ,W�

L , ZL are approximated by scattering

amplitudes of a triplet massless “pions” ⇡a parametrizing the coset space of the SU(2) ⇥
SU(2)/SU(2)V non-linear sigma model. The SU(2)L ⇥ U(1)Y subgroup of SU(2) ⇥ SU(2)

1The fact that only one parameter a controls the Higgs coupling to both W and Z boson is the consequence

of assuming custodial symmetry, which is strongly suggested by electroweak precision tests.

1
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1

• Two Higgs doublets a<1 (|cosα|, |sinα| <1)
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or constraining its couplings to other Standard Model (SM) particles. The coupling to W

and Z bosons are particularly important because they control the high-energy behavior of

the scattering amplitude of longitudinally polarized electroweak gauge bosons. Theoretical

constraints on that coupling were previously discussed in Ref. [1] in the framework of Strongly

Interacting Light Higgs (SILH) [2], where an approximately elementary Higgs doublet arises

as a pseudo-Goldstone boson in a strongly interacting sector. In this letter we revisit this

question, without making reference to an elementary Higgs doublet field. By the Higgs boson

we simply mean any light neutral scalar particle with custodial isospin 0 and a significant

coupling to W and Z.

Parametrizing the Higgs coupling to W and Z as1

LhV V = a
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v

�
2m2
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µ W�

µ +m2
ZZµZµ

�
(1)

we will see that there is a sum rule relating the coe�cient a to a linear combination of

the total cross sections in di↵erent isospin channels of longitudinal electroweak gauge boson

scattering:
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The equality holds for a light Higgs boson and in the limit of vanishing electroweak gauge

couplings, g, g0 ! 0. The SM predicts a = 1. Intriguingly, CMS recently reported an excess

of Higgs-like events in the diphoton channel produced in association with 2 forward jets

[3]. This may possibly be interpreted as an enhancement of the vector-boson-fusion Higgs

production mode and therefore a hint for a > 1. From Eq. (2) it is clear that the Higgs

coupling to W and Z exceeding the SM value implies that the cross section in the isospin-2

channel dominates over the remaining 2 channels, at least for a certain range of invariant

mass s. The simplest way to satisfy the sum rule with a > 1 is by introducing a resonance

in the isospin-2 channel.

Derivation of the sum rule. Below we derive Eq. (2). We will use the equivalence

theorem, where the scattering amplitudes of W+
L ,W�

L , ZL are approximated by scattering

amplitudes of a triplet massless “pions” ⇡a parametrizing the coset space of the SU(2) ⇥
SU(2)/SU(2)V non-linear sigma model. The SU(2)L ⇥ U(1)Y subgroup of SU(2) ⇥ SU(2)

1The fact that only one parameter a controls the Higgs coupling to both W and Z boson is the consequence

of assuming custodial symmetry, which is strongly suggested by electroweak precision tests.

1

• Two Higgs doublets a<1 (|cosα|, |sinα| <1)

• Higgs as pGB: a~ cos(v/f) <1
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amplitudes of a triplet massless “pions” ⇡a parametrizing the coset space of the SU(2) ⇥
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1The fact that only one parameter a controls the Higgs coupling to both W and Z boson is the consequence

of assuming custodial symmetry, which is strongly suggested by electroweak precision tests.

1

• Two Higgs doublets a<1 (|cosα|, |sinα| <1)

• Higgs as pGB: a~ cos(v/f) <1

a>1 requires doubly-charged Higgs H++

Low et al. 0907.5413
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Falkowski, Rychkov, Urbano 1202.1532More stringent sum rule: 

a>1 requires doubly-charged Higgs H++

Low et al. 0907.5413
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I=2 contrib in WW scattering necessary. Models?
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Enhanced h→VV?
• Simplest model: Machacek & Georgi (1985):

• H2,1/2 + T03,0 +T13,1 

• both doublets and triples participate in EWSB but 
custodial symmetry is preserved

• 2singlets+1triplet+1quintuplet of custodial isospin

• 4 neutral + 2 charged + 1 doubly charged scalars

• a depends on mixing angles and a2<8/3 (can be 
larger than 1)
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Enhanced h→VV?
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Figure 9: Left: Best fit regions at 68% (darker green) and 95% CL (lighter green) in the

(sin↵, sin�) plane, setting mh = 125 GeV and mQ = mA = 300 GeV. The SM point (cross)

compared to the �2 minimum (red dot) corresponds to �2
SM � �2

min = 4.4. The dashed lines show

contours of constant R�� . Right: The 95% CL allowed regions for sin� and mA obeying con-

straints from Bs,d � B̄s,d mixing (blue band with solid contour), from b ! s� (red band with

dashed contour) and from t ! bA+ decays (small regions inside dotted curves are excluded).

the mQ = 300 GeV is not constrained by doubly charged Higgs searches at CMS [32],

ATLAS [33], CDF [34] and DO [35], and from searches for anomalously large production of

multi-lepton final states [36] (similar sensitivity is expected from SUSY searches that require

same sign leptons with missing jet and MET [37, 38, 39]).

6 Conclusions

The recent discovery of a Higgs boson at 125 GeV has important consequence for any new

physics scenario. In this paper, we studied those implications using the Higgs searches

reported by ATLAS, CMS and the Tevatron in currently the most sensitive channels. We

derived the constraints on the parameters of the e↵ective Lagrangian describing, in a very

general fashion, the leading order interactions of the Higgs particle with matter. Overall, the

27

Carmi, Falkowski, Kuflik, 
Volansky, Zupan arXiv:1207.1718

viable in large region of parameter space
best fit: c~1, a>1 (enhance γγ)
direct and indirect constraints easily satisfied
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Unnatural SM + ??

(split susy, supersplit susy and all that…)
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Unnatural SM

• In H.Haber lecture: 125GeV Higgs imply that if the SM is 
valid up to the Planck scale, the EW vacuum is metastable 
(and the potential is very flat at that scale)

• Requires that hierachy problem is of “environmental” origin

• maybe only scalar finetuned is the Higgs b/c v<<MP

• but if h→γγ stays enhanced new physics at the EW scale 
is needed...
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Unnatural SM+...
• enhance h→γγ with scalars would introduce new 

hierarchy problems

• using fermions destabilize Higgs potential: ΛSM << MP

Since this counter e↵ect relies, again, on sizable Yukawa couplings yn, y
c
n, it comes at the cost of

lowering somewhat further the instability cut-o↵ ⇤UV .
In Fig. 6 we illustrate this behavior by computing S and T , following [46] and performing the

EWPT fit for mh = 125 GeV [47]. In the left panel, we indicate with a green shaded area the 95%CL
EWPT exclusion region in the (mL2 , xn) plane. Here, xn is defined in analogy with Eq. (2.3) as
x2

n = (2ynycnv
2/m2

n1
), where mn1 is the lighter neutral state mass, and mL2 is the mass of the heavier

charged state. We set mL1 = 100 GeV, y = yc, yn = ycn and m = m� = mn. Also plotted are the
diphoton enhancement (pink) and values of ⇤UV (gray). In reading the plot, note that walking on
the horizontal axis towards larger mL2 is equivalent to walking up on the left edge of the left panel of
Fig. 2. We see that with some neutral mixing, it is possible to tune away the tension with EWPTs,
even for large µ�� . In the right panel of Fig. 6 we show on the S�T ellipse three sample model points,
marked correspondingly on the left.

200 250 300 350 400 450 500 550 600

1

2

3

4

5

6

7

8

9

10

mL2 [GeV]

x n

1.25
1.25

1.25

1.
5

1.
5

1.5

1.75
1.75

1.75

2

2
2 

 
µ
aa

RUV=1 TeVRUV=10 TeV

S

T

−0.2 −0.1 0 0.1 0.2 0.3

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 6. Electroweak constraints for the “vector-like lepton” model. Left: contours of µ�� (pink) plotted in

the (mL2 , xn) plane, where mL2 is the heavier charged state mass and xn is defined in analogy with Eq. (2.3)

as x

2

n = (2yny
c
nv

2

/m

2

n1
), with mn1 the lighter neutral state mass. Gray lines denote the vacuum instability

cut-o↵ ⇤UV . The green filled area is excluded at 95%CL or more by EWPTs. The lighter charged fermion

mass is fixed to mL1 = 100 GeV. Right: Markers show the model position w.r.t. the S � T error ellipse, for

three sample points in the left panel. Blue, green and red lines denote the 68.27%CL, 95%CL and 99.73%CL

ranges.

4 Discussion and conclusions

For a single set of new vector-like fermions, with large enough Yukawa couplings to give an en-
hancement of µ�� = 1.5, demanding that the tunneling rate through false vacuum bubbles of size
⇤�1

UV ⇠ (10 TeV)�1 is less than the age of the universe requires the existence of a new, un-colored,
charged fermion lighter than about 115 GeV. Even with a very low cut-o↵ scale, ⇤UV = 1 TeV, an
enhancement of µ�� = 2 is impossible.

A larger number N of fermions allows us parametrically to keep a large enhancement for µ�� while
ameliorating vacuum stability. It is in principle possible, though contrived, to get µ�� = 1.5 while
deferring the instability scale to ⇤UV ⇠ 10 TeV, though even for N = 2(4) this requires the fermions
to be lighter than 150 (200) GeV.

– 11 –

Arkani-Hamed, Blum, 
d’Agnolo, Fan arXiv:1207.4482

if h→γγ stays high at 1.5x SM either new fermions in 
LHC reach or low cutoff → NP around the corner
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Unnatural SM+??
• We know there is physics beyond the standard 

model that requires new dynamics

• neutrino masses

• dark matter

• baryonic asymmetry

• Some of the models presented to address these 
questions require new interactions with the Higgs

• minimally including these new ingredients may 
change the Higgs stability picture → different cutoff 
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SM+WIMP DM

• WIMP Dark matter is “unique”:

• weak scale mass → many decades in energy to 
affect Higgs

• couplings can be sizable

• indipendent constraints → correlations with 
Direct Detection measurements

Higgs stability of SM+WIMP DM?

<σv> ~ 1 pb

Cheung, M.P., Zurek arXiv:1203.5106
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Full picture:
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Full picture:

• Requirements of relic abundance limit the 
desert
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What’s next?
• The “sketch of the Higgs face” will become more 

detailed: smaller errors, new info on bb,ττ modes, 
maybe even some “exotic” modes like h→aa→bbττ 
or jjμμ, etc.

• If something non-standard remains in the BR’s (or 
appears) the hunt for the responsible particles will be 
open 

• Testing the role of the 125GeV particle in the 
(composite nature, role in WW scattering, …) will 
take a long time

• In the meantime it will bring us a lot of fun. Happy 
Higgs to all of you!!
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