
Workload management with
glideinWMS

Igor Sfiligoi, Fermilab, Batavia, IL, USA

v0.8.1 – May 29th

1.Introduction
GlideinWMS is a general purpose Workload Management System (WMS) developed by CMS

developers in the US, based on previous experience in CDF. It relies heavily on Condor software, with
additional glideinWMS specific code.

GlideinWMS has been deployed in production by CMS at Fermilab and has been extensively used
for single-user analysis by the CMS San Diego group. It is also currently being used in prototype
deployments by MINOS and CDF at Fermilab.

This document gives a general overview of glideinWMS, and describes the current and envisioned
deployment scenarios for CMS. The security aspects of both software itself and the (anticipated)
deployed configuration are emphasized.

2.Structural overview
GlideinWMS is composed of six logical pieces, as shown in Fig 1.:

• a Condor central manager,

• one or more Condor submit machines,

• a glideinWMS collector,

• one or more VO frontends,

• one or more glidein factories, and finally

• the glideins.

The elements composing a glideinWMS installation can be grouped in two classes:

• The Condor pool elements, represented in green, handle the user jobs.

• The glidein handling elements, represented in cyan, regulate the amount of glideins sent to
the Grid sites.

The two classses are described in separate sections below.

1/17

2.1. The Condor pool
The Condor pool is the core of the glideinWMS, as it handles the user jobs and is effectively the

only part that the users know about.

A glideinWMS Condor pool is effectively a regular Condor pool, where the execution daemon,
called condor_startd, has been submitted as a Grid job instead of being pre-installed by the system
administrators. This little difference has however a strong security impact; since the condor_startd is
running as a regular user, it cannot change the UNIX identity of the user job on its own. However,
condor_startd can use gLExec for this task; if other similar tools become in the future, Condor could
evolve to support those, too.

A Condor pool is defined by its central manager, in particular the condor_collector daemon running
there; it collects the information about all the other daemons in the system. See Fig 2.1. All network
communications between Condor daemons are provided over a secure channel by CEDAR, a Condor
specific mechanism that provides mutual authentication, integrity, and confidentiality. Several
authentication mechanisms are supported, but most glideinWMS Condor pools will use GSI
authentication and will integrity check all the messages. When GSI is used, authorization is based on
the credential DN. Condor supports both explicit lists as well as regular expressions.

The same figure also shows that the user submits his jobs to a local condor_schedd daemon.
Several authentication methods are available, but most systems are configured to accept either
filesystem based authentication or GSI authentication.

Once a job is accepted by condor_schedd, the negotiation cycle can begin. The condor_negotiator
matches the attributes of the user jobs in the condor_schedd queue to the attributes of condor_startd's

2/17

Figure 2.1: Central Manager defines a Condor Pool

condor_schedd

Submit Machine

Submit

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Advertize

Advertize

Figure 1: GlideinWMS schematic overview

Collector

Glide in
factory

Glide in
factory

VO Frontend

VO Frontend

Central
Manager

Submit machine

Grid Site

Glide in

Glide in

Submit machine

Submit machine

running on the worker nodes , as shown in Fig 2.2. Once a match is found, the condor_negotiator
sends a match message to the interested parties.

At this point the condor_schedd spawns a new process, called condor_shadow, owned by the real
user identity. The condor_shadow sends a Claim request to the condor_startd that in turn spawns
another process, called condor_starter. See Fig 2.3b. If using gLExec, the user proxy is delegated
during the Claim request and the condor_starter will be running as the real user identity, as shown in
Fig 2.3a. Different colors indicate different UNIX identities.

At this point, the condor_shadow can send the user job's input sandbox to the condor_starter. Once
received, the user job is spawned and executed. After the job is done, condor_starter sends the output

3/17

Figure 2.2: Central manager matches submit machines to worker nodes

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Match

Match

Figure 2.3a: Submit machine claiming a worker node with gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow
Spawn, using gLExec

condor_starte r

De legate proxy

Claim

Figure 2.3b: Submit machine claiming a worker node without gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

condor_starte r

Claim

Spawn

sandbox back to the condor_shadow, cleans up the working directory, and terminates. See Fig 2.4a. If
the condor_starter cannot clean up for any reason, the condor_startd will do it.

Once the old job is finished, the condor_startd can either accept a new job from the same
condor_schedd, force a new matchmaking cycle or terminate. Typical configuration will keep the
condor_startd accepting claims for a few hours before terminating, as long as new claims arrive
within 20 minutes or so. To minimize the latencies re-matching is usually not requested, but can be
easily enabled.

Obviously, running the condor_starter under the same UNIX identity as the user job is potentially a
security risk. However, the risk is minimal, as the only external action that the condor_starter can
perform is send out the output sandbox; the input sandbox is being pushed to it. Nevertheless, the
Condor team is working on improving this by calling gLExec to spawn the job itself, as shown in
Figures 2.3b and 2.4b.

Please notice that without gLExec in identity switching mode the user job runs under the same
identity as the condor_startd, as shown in Fig 2.4c. This is a very dangerous setup if more that a single
user is using the system; a malicious user could easily compromise condor_startd and start farming
the proxies of other users. This deployment scenario is strongly discouraged for multi-user setups.

4/17

Figure 2.4a: Condor_starter handles the user job

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox

3 -Transfe r output sandbox

User job

2 - Spawn

Figure 2.4b: Future condor_starter setup

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

2 - Spawn, using gLExec

More information about Condor pools can be found in the Condor manual

http://www.cs.wisc.edu/condor/manual/v7.0/

2.2. Glidein handling
A glideinWMS Condor pool relies on glideins to start condor_startd's on Grid worker nodes. The

glidein submission process is handled by three distinct set of processes, as shown in Fig. 3:

• Glidein factories are in charge of submitting the glideins.

• VO frontends regulate the number of glideins to be submitted (by the glidein factories),
based on the number of jobs waiting in the condor_schedd queues.

• A glideinWMS collector is used as a dashboard for message exchange.

As with all other Condor software, CEDAR is used for communication. The typical configuration
will use GSI for authentication and will integrity check all the messages.

Glidein factories advertise the known Grid Computing Elements (CEs), along with any attributes
that they know, or speculate, about them. VO frontends compare the attributes published by the glidein
factories with the attributes present in user jobs, and decide where to send glideins. Glideins will be
sent to all the CEs that match at least one user job.

5/17

Figure 2.4c: Without identity switching, condor_startd exposed to user attacks

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

Spawn

Figure 3: Glidein handling

Collector

Glide in
factory

VO Frontend

Grid Site

Submit machine

Submit machine

1 – Advertise
myse lf

2 – Ge t factory list

3 – Ge t list of
waiting jobs

4 – Request
glide ins

5 – Submit
glide ins

http://www.cs.wisc.edu/condor/manual/v7.0/

The glidein submission logic is based on constant pressure; as long as there are suitable jobs waiting
in queues on the submission machines, a small number (typically up to 100) of glideins will be kept in
the queues of each and every suitable CE. The glidein factories will use Condor-G for actual glidein
submission; the standard Grid mechanisms are thus used for the transport of the glidein payload and
glidein proxy to a worker node. Other mechanisms, like the gLite WMS, could be used but are not
supported in the current implementation.

A glideinWMS glidein is a shell script designed to download, and possibly execute other files, as
shown in Fig 4. These other files are hosted on a Web server, like Apache, usually running on the same
machine as the glidein factory. Standard HTTP protocol is used to download the files, but all files are
integrity checked using sha1sum. Since there is no authentication involved and privacy over the wire is
not possible. HTTP has been chosen over other more secure mechanisms, like HTTPS, because it
allows for caching; a proxy cache, like Squid, will be used if available.

The executables launched before condor_startd are responsible for gathering machine specific
information and create a configuration file for the condor_startd. The basic configuration scripts come
with glideinWMS, but administrators can add their own executables.

More details can be found in the glideinWMS manual:

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc/manual/

2.3. Working in a firewalled world
Condor, and by extension glideinWMS, relies on two way network communications. However,

several Grid sites are either behind a NAT or use a restrictive network firewall. To work in
environments where only outgoing connectivity is available, Condor provides a product called GCB
(Generic Connection Brokering).

With GCB, only a few nodes need to have incoming connectivity: the Condor central manager
and the GCB nodes. All other processes will then use one of the GCB nodes to route their incoming
traffic. The process with no incoming connectivity will establish a long lived TCP connection with
GCB, obtaining a dedicated port number on the GCB machine. This GCB address is then published as
the process' contact point and when a message needs to be sent to it, the message will be sent to GCB.
GCB will then use the existing TCP channel to relay the message to the waiting process. See Fig. 5 for
an example.

6/17

Figure 4: Glidein script overview

1 – startup
script
(w/signature)

Factory Node

Web se rve r

Glide in factory

Worker Node

condor_startd

2* – Download,
ve rify (and exe)

N – Spawn

http://www.uscms.org/SoftwareComputing/Grid/WMS/glideinWMS/doc/manual/

Please notice that GCB does not perform any authentication at all; all the requests are honored. The
security of the channel is delegated to the end points, condor_shadow and condor_startd in Fig. 5.

At the time of writing, there is no known way to make Condor work in environments where direct
outgoing connections are not allowed. glideinWMS is thus unable to use such resources.

2.4. Credentials handling
As with all the pilot infrastructures, two kinds of credentials are handled; the pilot credential and

the user credentials.

The pilot credential is held by the glidein factory. There is no explicit proxy renewal in place. The
glidein factory expects a valid proxy to be referenced by the X509_USER_PROXY environment
variable; how the proxy is kept valid at all times is currently out of scope for the glideinWMS and may
change between deployments. This proxy is used both for authentication with the condor_collector and
for submission of the glidein startup script via Condor-G.

When used for submitting glideins, the proxy is transferred to the worker node using standard Grid
tools (Condor-G using pre-WS or WS GRAM). Condor-G supports updates of proxies for Grid jobs,
but it is currently not used. The pilot proxy is used by condor_startd to authenticate with the other
Condor daemons and it is needed for the whole lifetime of the glidein. The validity of the proxy at
startup is used to determine the maximum lifetime of the glidein. This can easily be changed, if one
accepts the risk associated with failed proxy renewals.

The user credentials are handled by the condor_schedd. The user specifies the location of a valid
user proxy and condor_schedd will simply take note of that. The user needs to refresh the proxy for the
lifetime of the job. There are essentially three ways how this can be done:

• Updating the proxy by hand, typing a password every time.

• Uploading the certificate or a long lived proxy into a trusted MyProxy server and use cron to
renew the local proxy. The cron script can either be run by the user or by the local system.

• Using cron with a local certificate without a password, or by embedding the password in
refresh script. While discouraged by the Grid community, some people do this.

7/17

Figure 5: Condor use of GCB to traverse firewalls

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

4 - Claim

2 – Advertise
GCB address

GCB Process

GCB Machine

1 – Establish TCP
connection

3- Match

5 – Claim re layed over
the existing TCP
channe l

Once the job is ready to start, condor_shadow takes the proxy and delegates it to condor_startd (or
condor_starter, depending on configuration). Let me stress that this is the classic GSI delegation and
the credential private key is never transferred over the wire. If the proxy ever gets updated on the
submission machine during the lifetime of the job, the proxy is re-delegated to the condor_starter.

The delegation does not put any limit on the delegated proxy. For security reasons a limited
delegation would be preferable, but this is currently not supported by Condor. The Condor team is
aware of this and will provide limited delegation in one of the future Condor releases.

3.Deployment scenarios by USCMS
USCMS has only a Fermilab local prototype production installation right now. A world wide

production instance for evaluation is however expected in the near future, followed by an analysis
instance. Installation details for future installations are not yet finalized, but an educated guess is
presented in this document.

3.1. Current prototype production installation
The current production installation is located at Fermilab and is sending glideins only to the

Fermilab CMS Tier-1 OSG Computing Element. This installation is used by a single production team
doing re-reconstruction and skimming.

The Fermilab installation is distributed over 5 machines; one hosts the glidein factory and the
glideinWMS collector, one hosts the Condor pool collector, the negotiatior and the VO frontend, and
three others host a schedd each. See Fig 6a. for an overview.

All communications between daemons, except simple information retrieval, are authenticated using
GSI authentication and integrity checks are enforced. The glidein factory uses the pilot proxy, while all
the other daemons use a host certificate. The Condor daemons are setup to be world readable, so no
authentication, nor integrity checking, is used while querying them.

8/17

Figure 6a: CMS Fermilab installation

condor_schedd

Submit Node 1

condor_collector

Coll. & FE Node

condor_negotiator
Factory Node

Glide in Factory

condor_collector

VO Frontend

condor_schedd

Submit Node 2

condor_schedd

Submit Node 3 Leg enda

GSI authenticated

Local, FS auth.

Unauthenticated
read

The user job submission is local to the submit nodes, and uses local FS authentication. This means
that all authentication is done at a Operating System level, using kerberized ssh. The users do not
provide the condor_schedds with any x.509 proxy.

The glideins are submitted using the pilot proxy, held by the glidein factory. The pilot proxy is
really a personal proxy of the production team leader, and it is refreshed by hand by this person on a
regular basis.

Once the condor_startd starts, it uses this pilot proxy, delivered by standard Grid mechanisms to
the worker node, for communication with the condor_collector. The submit node authenticates with
the glidein using the host certificate. The condor_shadow transfers to the condor_starter only the
user job; no proxy delegation is involved as the user did not provide a proxy. As a result, the user job
has access to the pilot proxy. Since this glideinWMS serves only one logical entity, the FNAL CMS
production group, this is acceptable.

See Fig 6b. for an overview.

The access to all of the above machines is restricted to the people in the FNAL CMS production
team. Kerberized ssh is used for login. The production team does not have root access on these
machines.

All the submitted jobs contain only CMS production binaries. This restriction is implemented as
policy only, and it is not enforced by any technical means.

3.2. Planned world­wide production installation
CMS is still evaluating the use of the glideinWMS for production purposes. The description below

is the author's best guess how it would be deployed if no problems are found.

9/17

Figure 6b: CMS Fermilab installation - Glideins

Submit Node

condor_collector

Coll. & FE Node

condor_negotiator

Factory Node

Glide in Factory

condor_collectorVO Frontend

Leg enda

GSI authenticated
w/ host ce rt

Unknown

Worker Node

User job

Compute Element

Globus

Batch SystemGSI authenticated
w/ pilot proxy

condor_shadow

condor_startd

condor_starte r

condor_schedd

Spawn the process

Job only

No proxy

The CMS production team is currently split between CERN and Fermilab, in order to cover the 24
hours using only day shifts. Similarly, the submission machines are distributed between the two sites to
maximize the uptime.

The envisioned glideinWMS-based production pool would also be deployed both at CERN and at
Fermilab to minimize the downtimes due to problems at one of the sites, while still maintaining a single
logical view of the system. Each and every service has at least two instances running in normal
conditions, and any one of them can go offline without drastically affecting the resource pool. Most
services are simply not critical, while the central manager would use the Condor high availability
features to switch the negotiation handling from one site to the other. See Fig. 7 for a visual overview.

The exact number of machines involved is not known yet, and will be determined after the
evaluation period. It is however expected that CMS will use the minimum number of machines needed
to guarantee the necessary throughput while maintaining enough redundancy to survive the failure of
any node. As described above, the nodes involved will be distributed between Fermilab and CERN.
Nodes at Fermilab will be maintained by the Fermilab CMS system administrators according to the
Fermilab security practices, while CERN nodes will be maintained by the CERN system administrators
according the CERN security practices.

User authentication will also be handled similar to the current prototype. All communications
between daemons will be GSI authenticated. On the other hand, the CMS production team will have
login access to all the submit machines, using kerberized ssh at Fermilab and password authenticated

10/17

Figure 7: The envisioned CMS world-wide glideinWMS pool

Central
Manager

Submit
machine

Submit
machine

GCB GCB GCB

OSG

Glide inGlide in

Fermilab

Glide in
factory

VO Frontend

Collector

Central
Manager

Submit
machine

Submit
machine

GCB GCB GCB

EGEE

Glide inGlide in

CERN

Glide in
factory

VO Frontend

Collector

Leg enda

Standard
connections

Alte rnate
connections

High avail.
sync

ssh at CERN. Submissions to the local condor_schedd will be authenticated by UNIX UID only. The
team personal proxies will not be used nor will be they transferred to the worker node.

How the glidein factory pilot proxy will be handled is not completely clear yet, but the authors best
guess is that CMS will use a service certificate that will be either local to the glidein factory or stored in
a MyProxy server. A cron script creating a VOMS-extended short lived proxy out of the certificate will
probably be used.

Since CMS is expected to use the glideinWMS both on EGEE and OSG, the glideins will most
probably have to be configured to support proxy renewal on the worker nodes. While technically easy,
the security and reliability aspects need to be evaluated.

3.3. Planned analysis installation
CMS analysis is handled by the CMS Remote Analysis Builder (CRAB). Users develop their own

analysis jobs locally and test them with a small local data set. Once they are satisfied with the job
behavior, they use CRAB to run the jobs on officially published datasets, usually using the Grid
resources. CRAB takes care of job submission, job splitting and output retrieval. CRAB hides the
usage of GRID middleware from the users, giving them a easy-to-use interface to the computing
resources.

CMS is still evaluating the use of the glideinWMS for analysis purposes. CRAB itself is also going
through a major redesign phase. The description below is the author's best guess how the combination
of the two could be deployed to best serve the CMS analysis needs.

The envisioned CMS analysis infrastructure will have a fully redundant glideinWMS infrastructure,
much like the production one described above in Figure 7, but distributed over many more sites, most
likely CMS T2 sites. However, users will never login directly to any glideinWMS submit machine;
each submit machine will instead host a CRAB Server, and all user interaction with the Grid will be
through the CRAB interfaces. See Figure 8 for a high level overview.

The CRAB server uses the EGEE Delegation Web Service Interface paired with a MyProxy instance
for proxy handling. The CRAB server Delegation Service needs to be a trusted host of MyProxy for
proxy renewal.

11/17

Figure 8: CRAB Server Architecture

Glide in

condor_schedd

Submit Machine

CRAB se rve r

User Machine

CRAB client

Leg enda

Grid protocols

Condor protocol

CRAB protocol

MyProxy

The glidein factories will use a service certificate for glidein submissions. Once a glidein starts, all
jobs will be paired with the user proxy and gLExec will be used to authenticate and authorize the final
user and to start the the user job under the appropriate UNIX identity.

Many technical details about the CRAB Server/glideinWMS interaction are not known at the time of
writing, as the integration work has not been finished yet.

4.Conclusions
GlideinWMS is a general purpose Workload Management System (WMS) based on the pilot

philosophy. GlideinWMS has been developed with security in mind, but like all pilot-based WMSes it
needs some help from the sites to achieve the desired security goals.

The current implementation requires the presence of gLExec in identity switching mode to safely
handle multiple users within the same instance. This operation mode has been tested on OSG resources
and I have not yet found any security issues with it.

12/17

Appendix

Pilot Job Frameworks questionnaire
0. Describe in a schematic way all the components of the system. If a component needs to use IPC to

talk to another component for any reason, describe what kind of authentication, authorization, integrity
and/or privacy mechanisms are in place. If configurable, specify the typical, minimum and maximum
protection you can get.

Described above.

1. Describe how user proxies are handled from the moment a user submits a task to the central task
queue to the moment that the user task runs on a WN, through any intermediate storage.

This was described in the Condor pool and Credentials handling sections.

2. What happens around the identity change on the WN, e.g. how is each task sandboxed and to
what extent?

If gLExec is used, it will execute the user job under a different UID. The OS then provides the
necessary protection from other users.

See Question 4 for more details about the sandbox handling.

3. How can running processes be accounted to the correct user?

The condor_starter keeps track of the user job process tree, and collects the user and sys cpu
use. Those, together with the wallclock time are recorded by the collector in the job history log.

If gLExec is used, gLExec can also do the proper accounting of resources. This information can
then be used by the local Grid administrators without the need to contact the glideinWMS
administrators.

4. How is a task spawned on the WN and how is it destroyed?

The user job is started by the condor_starter in a dedicated directory. This was described in the
Condor pool section. See also Figures 2.5a, 2.4b and 2.4c for a schematic overview.

When the job ends, the condor_starter will clean up the startup directory tree and kill any
remaining process. After condor_starter terminates, the condor_startd will check again if any
files or processes are left and do the cleanup if needed. Malicious users can demonize a process
and escape the cleanup procedure, but this cannot be avoided without some help from the system.

13/17

The coming OSG 1.0 deployment of gLExec is using secondary GIDs to track the process tree
(and will destroy the complete process tree when the main process terminate). To the authors best
knowledge there is nothing equivalent for EGEE, yet.

5. How can a site be blocked?

IP based controls can be set up either at the system level (like iptables) or in Condor itself.

6. What site security processes are applied to the machine(s) running the WMS?

 [Here WMS means the VO WMS, not the gLite WMS.]

The machine is maintained by the hosting site system administrators according to the hosting
site policies. Since most of the described use cases are still in the planning stage, not much more
details can be given at this time.

 Who is allowed access to the machine(s) on which the service(s) run, and how do they obtain
access?

Only system administrator and VO service administrators are allowed access to the machines.
Hosting site login policies for privileged users are followed.

In the case of production instances, the production team users can login to the machine using a
non privileged account. Hosting site login policies are followed.

 How are authorized individuals authenticated on the machine(s)?

Following the hosting site login policies.

 What is the process for keeping the service(s) and OS patched and up-to-date, especially with
respect to security patches?

Hosting site system administrators follow the hosting site patching procedures.

 Do you have an identified security contact?

Not yet, as it is not in production use yet.

 Describe the incident response plan to deal with security incidents and reports of unauthorized
use?

Not defined yet, as it is not yet in production use.

For the prototype, we would simply shut down the glideinWMS instance in case of incident.

 What services (in general) run on the machine(s) that offer the WMS service?

14/17

Apart from the glideinWMS specific services, only the base services requested by the hosting
site policy are run.

 What processes exist to maintain audit logs (e.g. for use during an incident)?

Condor maintains extensive daemon and user logs. All those are local and there is no short-term
plan to make them remote.

The OS maintain its own standard logs. If the hosting site procedures support remote logging, it
is used.

 What monitoring exists on the machine(s) to aid detection of security incidents or unauthorized
use?

To start with, the same logs described above.

Moreover, all Condor daemons maintain extensive information about jobs and resources in
memory and this information can be used for monitoring.

7. Can you limit the users that can submit jobs to the VO WMS? How?

On the production installations, the submission nodes only accept local submissions. A user
needs login privileges to submit a job to the VO WMS.

On the analysis installations, all allowed users need to be listed in a grid-mapfile. The grid-
mapfile is checked by Condor at job submission.

15/17

Condor pool figures

16/17

Figure 2.2: Central manager matches submit machines to worker nodes

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Match

Match

Figure 2.3a: Submit machine claiming a worker node with gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow
Spawn, using gLExec

condor_starte r

De legate proxy

Claim

Figure 2.4a: Condor_starter handles the user job

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox

3 -Transfe r output sandbox

User job

2 - Spawn

Figure 2.1: Central Manager defines a Condor Pool

condor_schedd

Submit Machine

Submit

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd

Advertize

Advertize

17/17

Figure 2.3b: Submit machine claiming a worker node without gLExec

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
Spawn

condor_shadow

condor_starte r

Claim

Spawn

Figure 2.4b: Future condor_starter setup

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

2 - Spawn, using gLExec

Figure 2.4c: Without identity switching, condor_startd exposed to user attacks

condor_schedd

Submit Machine

condor_collector

Central Manager

condor_negotiator

Worker Node

condor_startd
condor_shadow

condor_starte r

1 -Transfe r input sandbox +
de legate proxy

3 -Transfe r output sandbox

User job

Spawn

