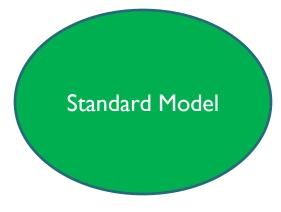
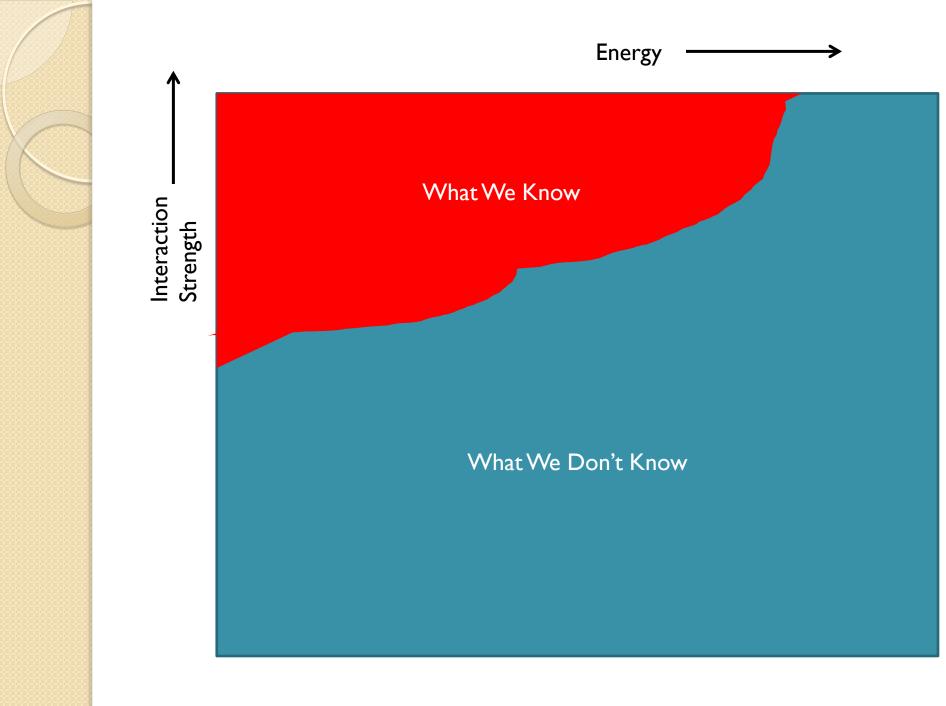

A Theorist's View of Exotica Searches


0

(A few selected topics)

Matt Strassler

Standard Model



Standard Model

Let's Remember What We Know

(Not as much as we tend to think...!)

Low-Mass Particles Still Possible

- Colored Particles are limited by Tevatron/LHC
 - If small color charge, spin and nasty decays, still ~200 GeV
 Gaps?!
- Electrically Charged/Color-Neutral limited by LEP
 Still 100 GeV limits (sometimes even less)
- Electrically and Color-Neutral particles
 - Practically speaking, NO LIMITS on mass
 - Small coupling:
 tiny direct production, yet decay in detector

"Hidden Valley"

- Including below the Z mass, down to I GeV and beyond
- Observe at LHC mainly in decay of a heavier particle
 - e.g. H, LSP,/LKP/LTP, top, Z

From Easy to Hard

- Dramatic Breakdown in QFT
- Sharp Resonance with SM-like Couplings
- Rich Spectrum of Colored Particles:
 - S/B >> I typically, accessible to model-indp. broad searches
- Gluinos and other particles with exotic color charge
 S/B > I for most decay modes
- Fermion Top-Prime (assuming dominant decay mode)
 - S/B ~ I [i.e. $\sigma(top') \sim \sigma(top)$ at fixed s-hat]
 - Need to model t versus t' carefully to make S >> B
- Scalar Top-Squark (assuming dominant decay mode)
- Electroweak Production
 - S/B << I [i.e. σ (s-top) ~ σ (top) at fixed s-hat]

Cut Hard and Count

- In many cases very hard cuts are used to get good S/B
- Consequent low sensitivity to signals with S~B or less
- But using MC to get better determination of B
 - Can relax cuts and let in more S
 - Can use new kinematic handles to cut or fit with more efficiency
 - Can add new samples previously viewed as unusable
- Need to move away from data-overdriven

Requires coordination of search groups with SM group and theorists

Search Strategies

- Broad "Easy" Model-Independent High Mass Searches
 - Narrow resonances on smooth distributions (mostly tails)
 - Excesses on High-Energy Tails

• More?

S/B >> I expected Low-Mass/Energy Fits Extrapolated

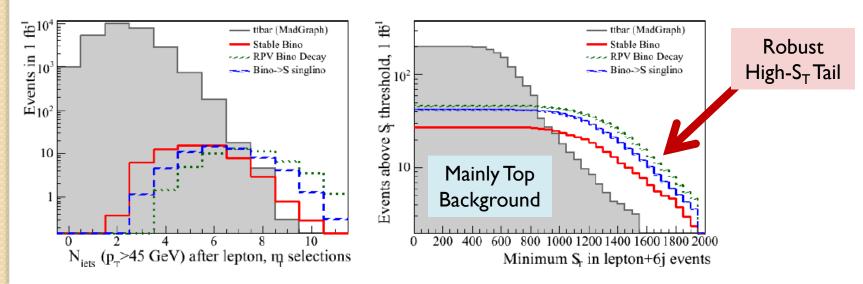
- Highly Targeted Searches for Low-Mass Phenomena
 - Top partners (specific model or 100% Br to particular final state)

• Higgs

S/B ~ I , < I , even << I Careful Background Modeling (mix data/MC driven) Optimized for Signal Sensitivity

- Areas to Fill In During 2012-2014
 - Moderately Targeted, But Still Rather Model-Independent
 - S/B ~ I or < I even on tails can hide in today's control samples

"Easy" Things Remaining


- Low-Mass Medium-Rate Dilepton or Diphoton Resonances
 - Maybe not visible in inclusive searches
 - Require high H_{T} , high p_{T} , high multiplicity?
 - Loosen isolation requirements? (e.g. lepton-jets, photon-jets)
 - Some limits from non-observation in non-dedicated searches
 - But what limits? What holes remain?
 - Information & coherence lacking (benchmarks?)
- Same for endpoints/edges

"Easy" Things Remaining

- High-Multiplicity High-S_T High-Rate signals
 - But below black hole rates/energies
 - SUSY models with extra cascades
 - RPViolating, or RPConserving with Hidden Valley/Stealth
 - Compositeness Models with decays to top + jets
- Strategy: Rare object(s) + many jets
 - Cf. Theorists: Lepton + Many Jets search [background: top]
 - Cf.ATLAS: MET + Many Jets search [background: QCD, W/Z+jets]
 - Cf. CMS: Photon + Many Jets search [background: QCD, inclu γ]
 - Require many jets, limited MET; look at S_T tail for excess
 - Increase sensitivity through better modeling of backgrounds
 - Cross-checks from kinematics, b-tagging

Rare Object + Many Jets

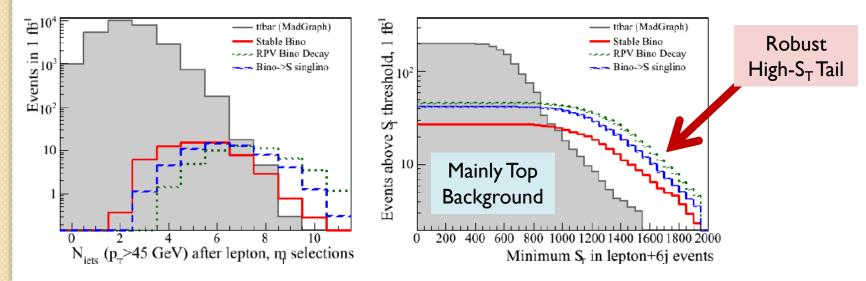
- Lepton + many jets Lisanti, MJS, Schuster, Toro 2011
 - No MET cut (just MT>30 to reduce fakes)
 - Background dominated by top pairs
- Reduced MET and M_T for
 - SUSY
 - R-Parity Violation, GMSB, Singlets with R-Parity Conserved
 - Top-Prime \rightarrow Top + Jets

Events/(10 GeV)

 10°

100

CMS data Stable Bino RPV Bino Decay


----- Bino->S singlino

200 300 400 500 600 700 800 900 100

 $M_{\rm T}$ in data and estimated new-physics signals

Cf. New CMS Photon + Multi-Jet HV/"Stealth SUSY", Search Rare Object + Ma

- Lepton + many jets Lisanti, MJS, Schuster, Toro 2011
 - No MET cut (just MT>30 to reduce fakes) 0
 - Background dominated by top pairs 0
- Reduced MET and M_{T} for
 - SUSY 0
 - R-Parity Violation, GMSB, Singlets with R-Parity Conserved
 - Top-Prime \rightarrow Top + Jets 0

Events/(10 GeV)

100

---- RPV Bino Dec.,

----- Bino->S singlino

200 300 400 500 600 700 800 900 100

 $M_{\rm T}$ in data and estimated new-physics signals

Exhaustive Top-Prime

- In pairs or if heavy, perhaps singly too
- Decaying to
 - bW, tZ, tH
 - t+MET
 - ° tg,tγ
 - tX, X a singlet decaying to jj (others?)
- Crucial to start combining channels
 - Allow that the t' decays differently from the t'bar
 - Combine the matrix of final states
 - Start with just two dominant decays A,B? (AA + AB + BB)
- Must get backgrounds under even better MC control

Exotica in Top or Bottom + Jets

- Motivated by top A_{FB}
 - Precise measurements of top + jets kinematics & b-tags
- Motivated by dark matter
 - Exotic top decays a challenge

These again require precision top physics

Other Resonances

- Targeted
 - Top squark \rightarrow dijets or jet + lepton (RPV)
 - Colored Scalar \rightarrow t + j (A_{FB}^{tt})
- Less Targeted
 - Ultra-weakly interacting, or X-onium states (low rate and low mass)
 - Pairs of resonances
 - New boosted objects \rightarrow Resonances in fat-jets with substructure

Flavor Structure and/or Violation

- $H \rightarrow tau mu$ (or even Z?)
- $t \rightarrow c H, c Z, c g$
- SUSY models with large flavor non-degeneracies
 Cf. A. Weiler talk
 - Production rates dramatically altered
 - squark-squark, squark-gluon production reduced
 - Single top + jets, possibly +MET
 - Sources of correlated OS mu + e, or mu + tau, or e + tau

Implications Workshop @ CERN

• E.g. edges or endpoints

Exotic H Production

- Exotic Production can't be 100 pb but perhaps a few pb
- How can we organize studies? Find H_{SM}-Free Zones?
 - Check H at high pT, high S_T, high MET, high multiplicity
 - H with jets that aren't from gg, VBF, Vh or tth
 - $t \rightarrow c H$
- Two H's at a time?
 - H \rightarrow h h, or SUSY with NLSP \rightarrow h LSP, or LSP \rightarrow gravitino h, or...
 - $\gamma \gamma b b$ (double resonance)
 - $\gamma \gamma$ + lepton
 - Dileptons (SF and OF) (inclu hadronic taus) plus b's
 - >2 leptons

Exotic H Decays

- Non SM decays may easily be Br ~10%, 1%, 0.1%
 - Recall 500,000 H_{SM} at CMS in 2012!!!

• Remember:

- There can be very light neutral particles
 - These could be very hard to produce, but decay within detector
- Light H very sensitive to new interactions

• Easily leads to new H decays

- Invisible (i.e. MET) Shrock 83
- Mostly Invisible (i.e., soft particles + MET)
- Two or more non-QCD-like jets (e.g. lepton jets, light pseudoscalars)
- Four-body (typically in paired resonances)
 - 2 quark pairs; lepton pair + quark pair ; photon pair + gluon pair
- Four-body + MET
- Six-body (e.g. two leptons + quark recoiling against three quarks)
- Long-lived Particles (2 or more)
- Etc., Etc., Etc.

Dermisek & Gunion 04 Chang, Fox, & Weiner 05 Strassler & Zurek 06 Carpenter, Kaplan & Rhee 06

Exotic H Decays

- Non SM decays may easily be Br ~10%, 1%, 0.1%
 - Recall 500,000 H_{SM} at CMS in 2012!!!

• Remember:

- There can be very light neutral particles
 - These could be very hard to produce, but
- Light H very sensitive to new interactions
- Easily leads to new H decays
 - Invisible (i.e. MET)
 - Mostly Invisible (i.e., soft particles + MET)
 - Two or more non-QCD-like jets (e.g. lepton jets, light pseudoscalars)
 - Four-body (typically in paired resonances)
 - 2 quark pairs; lepton pair + quark pair ; photon pair + gluon pair
 - Four-body + MET
 - Six-body (e.g. two leptons + quark recoiling against three quarks)
 - Long-lived Particles (2 or more)
 - Etc., Etc., Etc.

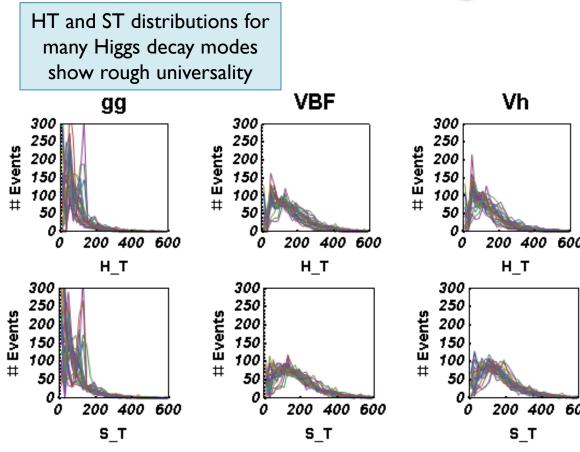
Worry: Higgs lies at the edge of trigger's knife; will the trigger even fire? Answer: **Not always** (cf. MJS trigger study)

Exotic H Decays

- Non SM decays may easily be Br ~10%, 1%, 0.1%
 - Recall 500,000 H_{SM} at CMS in 2012!!!

• Remember:

- There can be very light neutral particles
 - These could be very hard to produce, but
- Light H very sensitive to new interactions
- Easily leads to new H decays
 - Invisible (i.e. MET)
 - Mostly Invisible (i.e., soft particles + MET)
 - Two or more non-QCD-like jets (e.g. lepton
 - Four-body (typically in paired resonances)
 - 2 quark pairs; lepton pair + quark pair ; pho
 - Four-body + MET
 - Six-body (e.g. two leptons + quark recoiling a
 - Long-lived Particles (2 or more)
 - Etc., Etc., Etc.


Worry: Higgs lies at the edge of trigger's knife; will the trigger even fire? Answer: **Not always** (cf. MJS trigger study)

Worry: Would improved triggering actually allow any interesting analyses? Answer: **Sometimes** (cf. analysis study by Katz, Shelton, Volansky, MJS, Curtin, Essig, ...)

MJS assisting CMS-Imperial (Buchmueller, Brooke, Tapper, ...)

CMS Inclusive VBF Data Parking

- H decays \rightarrow S_T ~ 100-150 GeV
- $S_T = H_T + MET$,
- H_T = sum scalar pT of all central objects
- In VBF, S_T larger since
- pT of H increased
- Typically a VBF jet is central

• Strategy

- LI: Require S_T (actually H_T or MET) >100 GeV
- HLT: Require 2VBF-like jets; > 10% efficiency
- Double or more the ``fallback" events

Question: add semiexclusive triggers relying on the Higgs decay products?

Exotic Objects (H ExoDKs, SUSY with low MET, etc.)

- Long-Lived Particles
 - Many final states, lifetimes, subtleties
 - Triggering is a huge issue! So is analysis of course.
 - Arkani-Hamed&Weiner 09
- Clustered Objects (e.g. lepton-jets) Many authors (inclu Wacker, Yavin,)
 - New Boosted Particles only produced this way
 - Isolation issues in triggering
- Quirks of all shapes and sizes
 - Weird tracks (triggering issue)
 - Weird underlying event (triggering issue?)

Unique triggering [urgent!!!] and analysis issues:

• discussion coming up that focuses on these objects

What should theorists do...

- With extra month we really need focus on triggers
 - Possible trigger strategies
 - Analysis studies to allow prioritization of triggering & analysis
- What are strategies for searching for
 - Exotic H production
 - Production of unknown low-mass resonances

Conclusions: Some Bullet Points

- The Obvious Must-Do's
 - Natural stuff that hides because of reduced/no MET
 - Top partners (e.g. stops, top-primes)
 - H/W/Z partners (e.g. electroweak-inos, KK partners)
 - Everything H (production/decay, expected/unexpected)
- Fishing In a Very, Very Big Sea of the Unknown
 - Resonances with unusual final states
 - Boosted
 - Lightweight
 - Long-lived
 - Flavor-violating or non-universal
 - Etc. Etc. Etc. Etc.

Conclusions: Some Bullet Points

- The Obvious Must-Do's
 - Natural stuff that hides because of reduced/no MET
 - Top partners (e.g. stops, top-primes)
 - H/W/Z partners (e.g. electroweak-inos, KK partners)

Everything H (production/decay, expected/unexpected)

Fishing In a Very, Very Big Sea of the Unknown

- Resonances with unusual final states
- Boosted

TRIGGER

ISSUES

- Lightweight
- Long-lived
- Flavor-violating or non-universal
- Etc. Etc. Etc. Etc.

Backup

My [Mostly Naïve] Suggestions

- Cross-Links Between Search Groups, SM Group Needed
 - Improved SM Measurements will underpin less-targeted searches
 - Such searches are fundamentally SM Null Tests
- Theory Needs to Be Put to Work
 - Monte Carlo programs work well
 - More reliance on MC, less on data-driven may be safe
 - Especially since we are not at the end of the data stream!
 - Safe techniques need to be developed (ratios, good kinematics, ...)
 - Bring MC/QCD/EW theorists into the SM measurements
 - Maybe start with top and with diboson (+ 0,1,2 jets)?
- Compare 7/8/14 TeV; detector effects, backgrounds, signals differ
 Mangano & Rojo
- Benchmarks: Do Not Let Them Limit Results Unnecessarily

Broad Resonances

- To see a broad resonance on a falling distribution is tough
- Need to predict background distribution rather than fit it
 - Theory MC to predict the physics curve
 - Other data or detector MC to predict the efficiency corrections?
- Additional benefits for narrow resonances at low rate
- Ambiguities can be settled with 7/8/14 TeV comparisons

Harder but Important in 2012-13

- Low Mass, Low Cross-Section Resonances
 - Maybe only observable in associated production, or in pairs
- Broad resonances
 - Precise (or monotonically uncertain) predictions of falling distributions?
- Electroweak Production
 - Includes charginos, neutralinos, sleptons; many other possibilities
- Non-Standard Model Higgs
 - New Scalar States (possibly very low cross-section)
 - New Production Modes
 - New Decay Modes (possibly rare recall 10⁶ Higgses)
- Rare W, Z, t decays (?)
 - LHC has the most of each of these [but trigger issues]

Simple Searches for H ExoDK

- On edge of existing H search
 - $H \rightarrow X X \rightarrow$ two dilepton pairs
 - $H \rightarrow X X \rightarrow$ dilepton pair + quark pair (possibly b's)
- Why wouldn't first be found in existing search?
 - Kinematic cuts inappropriate
 - Isolation requirements too tight
 - Background estimates too high
- Why might the second escape?
 - Requirement of near-on-shell Z in leptons or in jets
 - Isolation requirements too tight
 - No one looking for dilepton resonance in this channel

Other Searches for H ExoDK

- Slightly more subtle
 - $H \rightarrow X X \rightarrow$ two diphoton pairs
 - $H \rightarrow X X \rightarrow diphoton pair + gluon pair$
- Why wouldn't first be found already?
 - Kinematic cuts inappropriate
 - Isolation requirements too tight
 - Trigger
- Why might the second escape?
 - Lots of fake background at low invt mass for photons
 - Isolation requirements too tight
 - No one looking for diphoton resonance requiring the jets

Hard Searches for H ExoDK

- Hard:
 - $H \rightarrow X X \rightarrow tau pair + b pair$
 - $H \rightarrow X X \rightarrow (\text{lepton-pair} + \text{MET}) + (3 \text{ jets})$
 - $H \rightarrow X X \rightarrow (photon+MET) + (photon+MET)$
- MET, no dilepton/diphoton resonance → no mass peaks
- Backgrounds challenging
- Trigger challenging
 - Fallback:WH/ZH where W or Z decays leptonically
 - Improvement: Dump VBF-candidate events to data parking
 - (factor of 2 3 ?)