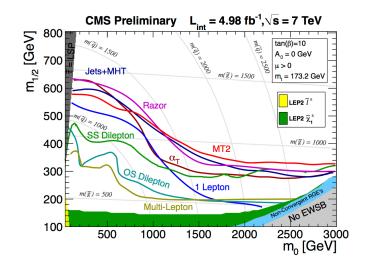
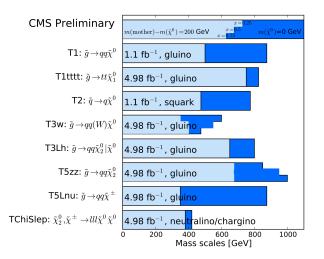
CMS SUSY Searches: Status and Future

Perimeter Institute Workshop August 2, 2012

Eva Halkiadakis

Rutgers University


Outline


- 1. Brief overview of recent CMS SUSY searches
- 2. Highlight selected new and novel results
- 3. Challenges → serve as talking points for discussion
 - Stops
 - direct stops challenging
 - Compressed spectra/ISR region
 - "Parked" data
 - Monte Carlo
- 4. What are we missing?
- 5. Discussion

- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

Inclusive SUSY Searches

- A number of channels and methods pursued
- Analyses focus on simple signatures
 - Common to wide variety of models
- Our results have been most commonly presented in the CMSSM m₀ vs m_{1/2} plane
 - Shows breadth of analyses and large gain in coverage
- Results also interpreted in terms of Simplified Model Spectra (SMS)
 - Fully quantify experimental results
 - e.g. provide reinterpreted limits as well as signal efficiencies vs. mass for benchmark models based on topological signatures

- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

Third Generation Searches

T1ttt

Two general types of searches

Some gluino cascade examples

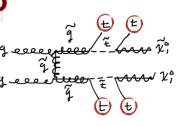
Production via gluino

cascades e.g.:

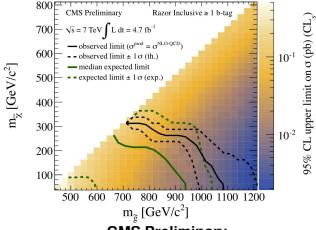
 $-g \rightarrow b + sbottom$

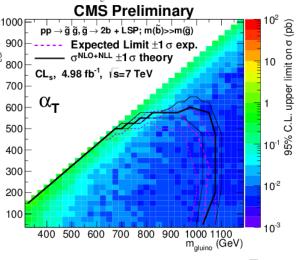
 $-g \rightarrow t + stop$

- g → tau tau

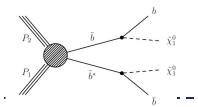

Probed gluino masses

up to about 1 TeV for

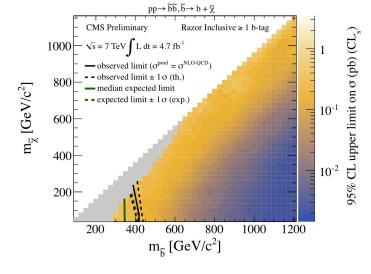

≈ any stop/sbottom mass

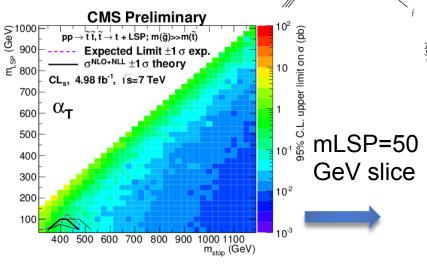

- Direct production

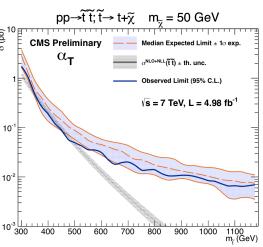
Next page...

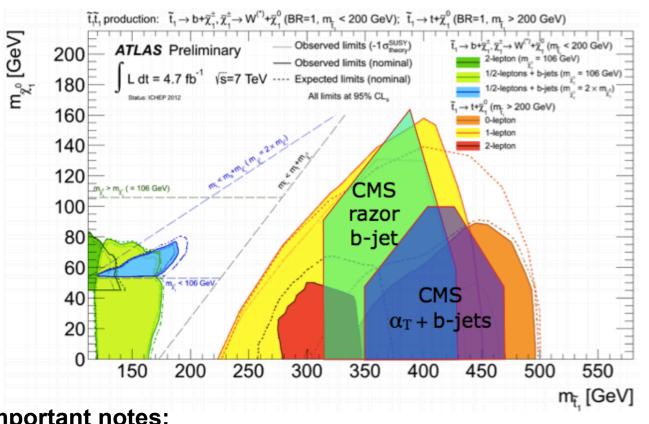


T1bbbb

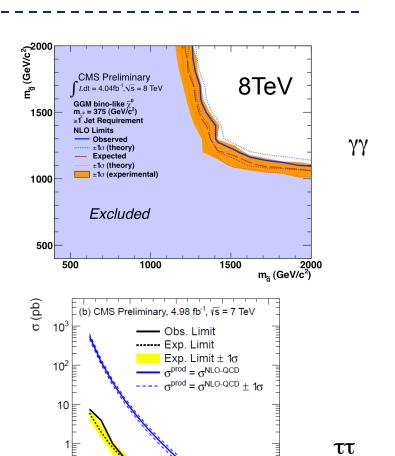





Direct stop/sbottom Production


- Inclusive searches have sensitivity
 - Examples shown
- Targeted searches are ongoing and challenging
 - More on this later

CMS-ATLAS Comparison


Daniele Alves "Implications" workshop @CERN

Important notes:

- 1) Region near diagonal removed due to uncertainties in ISR modeling.
- 2) Limited granularity in our signal scans.

For 8TeV we are preparing finer scans; production is a computing challenge.

- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

10⁻¹ |

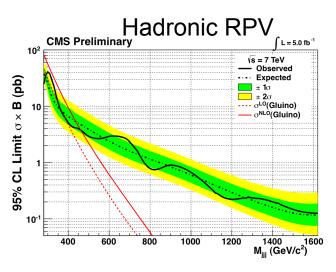
10⁻²

200

400

600

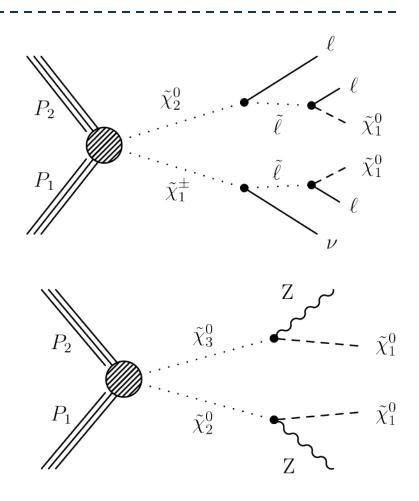
800


1000

10

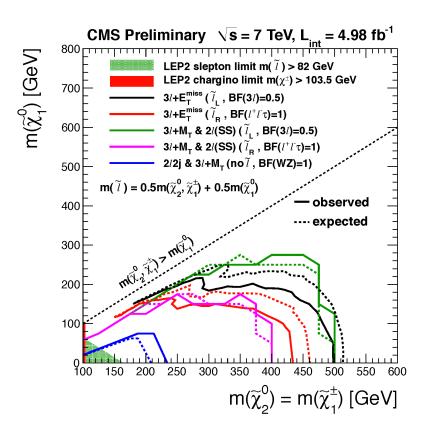
m_a [GeV]

- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

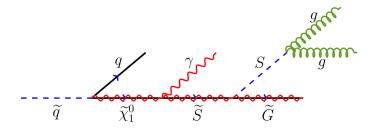


- Inclusive searches
- 3rd generation searches
 - Gluino mediated
 - Direct stop/sbottom
- GMSB
 - photons, taus
- EWK production
- R-parity violation
- Alternative models
 - e.g. Stealth SUSY

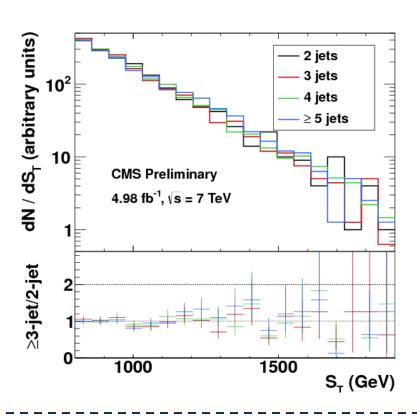
Will now highlight a couple of selected new and novel searches


What's new?: EWK Production

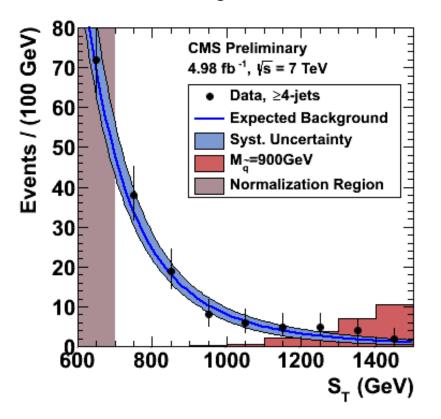
- New search for charginoneutralino production
 - Hot-off-the-press (approved and soon to be public)
 - A preview of what is to be unveiled at SUSY12
- Experimental signatures:
 - 4I, 3I + MET, 3I + M(II) + M_T , 2I (same-sign), Z(II)V(jj)
 - Includes reinterpretation of arXiv/1204.5341
 - As well as targeted complementary searches
- Investigate two classes of models
 - With and without light sleptons
 - Examples on the right

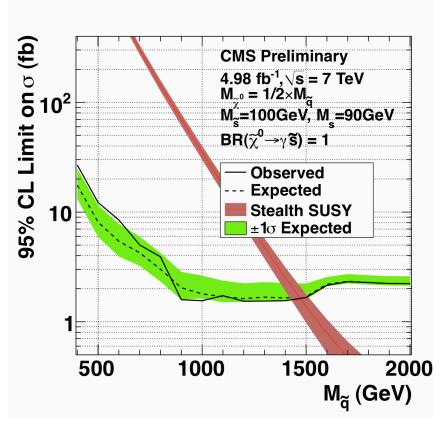

EWK Production

- Interpretations (summary on right)
 - χ⁺χ⁰ SMS with slepton-mediated decays
 - 3I + MET
 - $-3I + M(II) + M_{T}$
 - 2I(SS)
 - χ⁺χ⁰ SMS with decays to W/Z+LSP
 - $-3I + M(II) + M_{T}$
 - -Z(II)V(jj)
 - GMSB Model with ZZ+MET
 - -41
 - -Z(II)V(jj)


Details coming soon at SUSY12

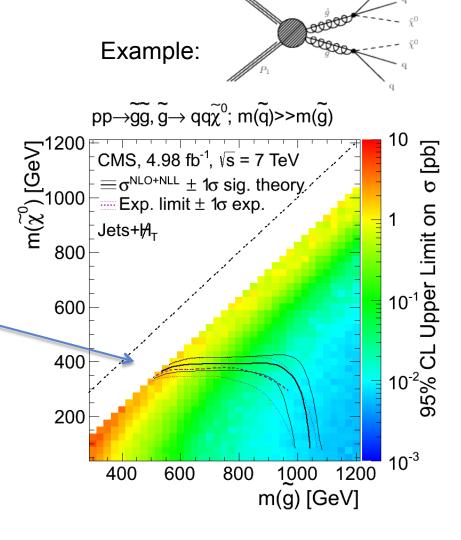
What's new?: Stealth SUSY with Photons


- Signature: Low MET from LSP produced with photons and jets
 - First search of its kind!
- Use S_T distribution
- Background estimated using S_T scaling a la Black Hole analysis
 - Shown to work in photon+jets events
 - No dependence on jet multiplicity
 - Use 2, 3 jet bins to predict bkg in ≥4jet events


$$S_{\mathrm{T}} = \mathrm{MET} + \sum_{\gamma} E_{\mathrm{T}} + \sum_{\mathrm{jets}} p_{\mathrm{T}}$$

Stealth SUSY with Photons

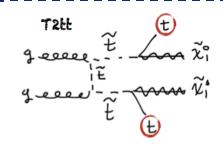
Functional form: $1/x^p$ where $x=ST/\sqrt{s}$ Normalization region 600-700 GeV

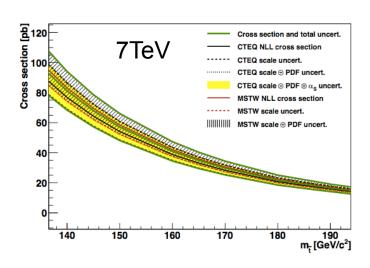


Observed: Msq > 1430 GeVExpected: Msq > 1420 GeV

What have we learned?

- SMS results can give an idea about the difficult regions we want to go after:
 - Very low mass splitting region
 - Low efficiency
 - Low MET → need ISR to get significant MET
 - →Uncertainties in modeling of the ISR (recall, signal samples generated with Pythia); region along diagonal removed
 - Stop pair production
 - Low mass and σ*BR
 - combined challenges

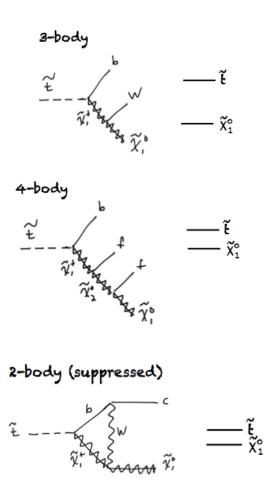

Challenges


 I would like to focus on the following challenges we are facing and discuss them; feel free to interrupt; can continue the discussion in the parallel group session

- Challenges of searches for stop pair production
- Compressed spectra / ISR
- MC issues (related to above)

Direct Stop Searches

- Searches are challenged by:
 - Small cross sections
 - Large background from ttbar
 - Similar kinematics as ttbar production
- Ongoing targeted efforts in:
 - Each channel (0,1,2 leptons)
 - Exploiting kinematic variables
 - M_T, Njet, angles, MT2, etc
 - Exploring use of more sophisticated tools such as ANN
 - More?



http://arxiv.org/abs/1206.2892

New and unexplored areas

- More targeted stop searches, e.g.
 - 3 body decays
 - 4 body decays
 - stop → charm + LSP
 -
- Stop lighter than top
 - Different set of challenges:
 - Lower p_T, cocktail of backgrounds
 - Exploring kinematic variables:
 M_{Ib}, p_T lepton, p_T b-jet, H_T, MET,
 M_T etc.
- Very heavy stop
 - Use boosted top tagging tools

Top Kinematics

- Although there is a lot we know about top production, there is a lot we don't know with great confidence → systematic uncertainties
- How can we control the systematic uncertainties? Need to better understand:
 - High p_T, MET, H_T tails
 - ISR/FSR
 - NLO
 - How well do we understand other processes such as
 - ttbar gamma, ttbar + W, ttbar + Z ...
 - In addition, can benefit from top property measurements way to validate our understanding
 - dsigma/dpT, dsigma/dMttbar, W helicity, spin correlations
 - Important to have a good handle on these, even as SM measurements, in order to have confidence in bkg predictions for searches
 - Will precision SM measurements provide us with a discovery?
- Anything else?

Compressed Spectra / ISR

- What can we do now?
 - Study ISR in data using p_T of Z's and p_T of ttbar
 - Use to validate Monte Carlo
 - Additional theoretical guidance?
- What can we do with the full dataset?
 - Analyze the "parked" data:
 - Have deployed "parked" triggers for this, to be analyzed after the data-taking is over next year.
 - 4-jet and 5-jet triggers with (staggered) thresholds and no MET
 - QuadJet50, QuadJet50_Jet20
 - HT200 trigger requiring an alphaT cut
 - Razor trigger with low thresholds
 - going after lower mass and lower met
 - Other ideas?

Monte Carlo Challenges

Signal Monte Carlo

- Currently use Pythia for signal generation
- Exploring the use of Madgraph
 - Validation needed
 - Q: Common sample generation for LHC experiments?
- Scans with fine granularity in parameter space of interest a computing challenge
 - Use Fast simulation; Full simulation adds computing challenge

ttbar Monte Carlo

- Madgraph used here
 - Comparisons with other generators (MC@NLO, Powheg) useful
- Large sample with full spin correlations being produced
 - Again a computing challenge

What are we missing?

- Full coverage for searches for stops
 - e.g. stops near top
- Broader program for RPV and Stealth (low MET)
- Full coverage for searches for EWK production
 - e.g. direct slepton production
- Full coverage of searches for long-lived (s)particles
 - Existing program in "exotica"
- Searches for higgsinos
- What else?
 - Feedback welcome!

Discussion