10000 -

5000-

■ RC18

RW00 RW01

SF01

TCDQ

■ RC19

TDE

X1ZDC X2ZDC X5ZDC

abr-06

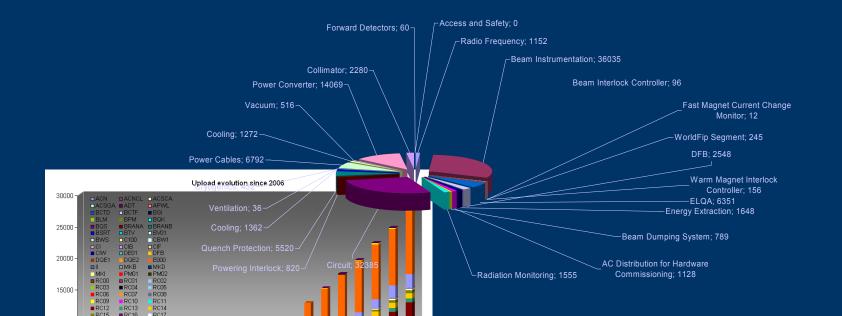
RPLA

SO01 TC TCDQM TCDS

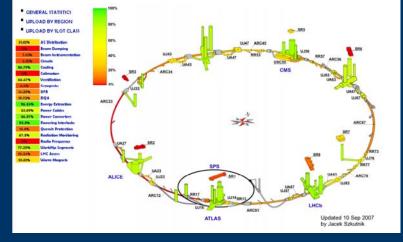
□ RC20

RROO

SE01

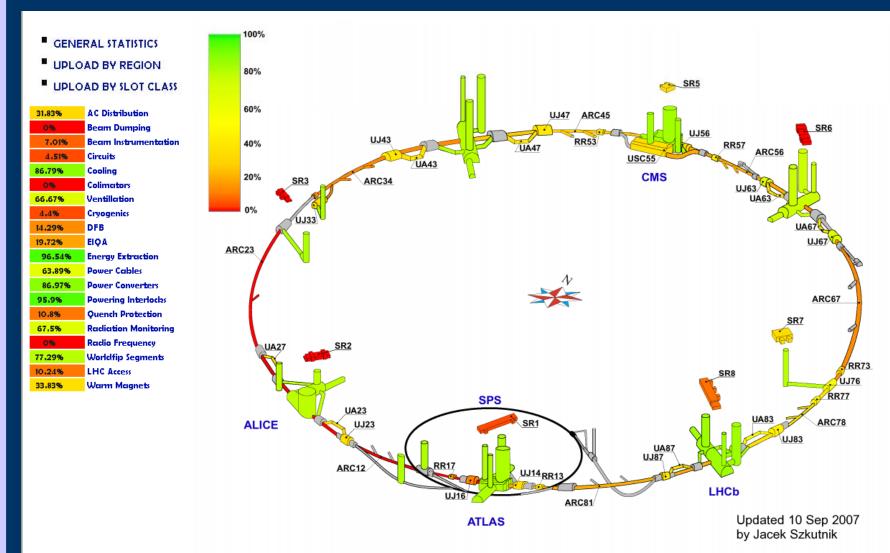

un-06 . go-06

sep-06


Time [month-YY]

dic-06

sne-07 feb-07 har-07 abr-07 jul-07 jul-07



What is the HC MTF ? Organization of the HC MTF. What is traced in the HC MTF ? How is the data organized ? Orders of Magnitude Upload rate 2006-2007. Expected Upload rate for 2007-2008. Quality of the Data: Documentation, NCRs, Repeated Steps. Manual & Automatic Upload. Integrating the upload within the test process. Link to the LHC Layout Database. Further requests by users.

What is the HC MTF ?

Database that tracks the Hardware Commissioning of the LHC Systems

 $\overline{\mathbb{Q}}$

Organization of the HC MTF

σ ۲ Ф Φ ۵ ш. ____ \sim 0 0 2 ے Φ q m p t e Φ S 11th ≥ <iode la construction de la cons Φ Ц ш \vdash Σ C Т

Radio Frequency Beam Instrumentation WorldFip Segment Machine Protection System Control ELQA DFB **Energy Extraction System AC Distribution Beam Dumping System Beam Injection System Radiation Monitoring** Warm Circuit Superconducting Circuit Control **Quench Protection System** Cooling Ventilation Cryogenics **Power Cables** Cooling Vacuum **Power Converter** Access & Safety Collimator

HC Team **Blanca** Perea Jacek Szkutnik Gosia Macuda **Alvaro Marqueta** Procedures Needs of the user to profile definition in terms of steps and Data tracking

HC

properties I Upload Data Upload tools (XML File Creator, XLS to XML) I Progress views

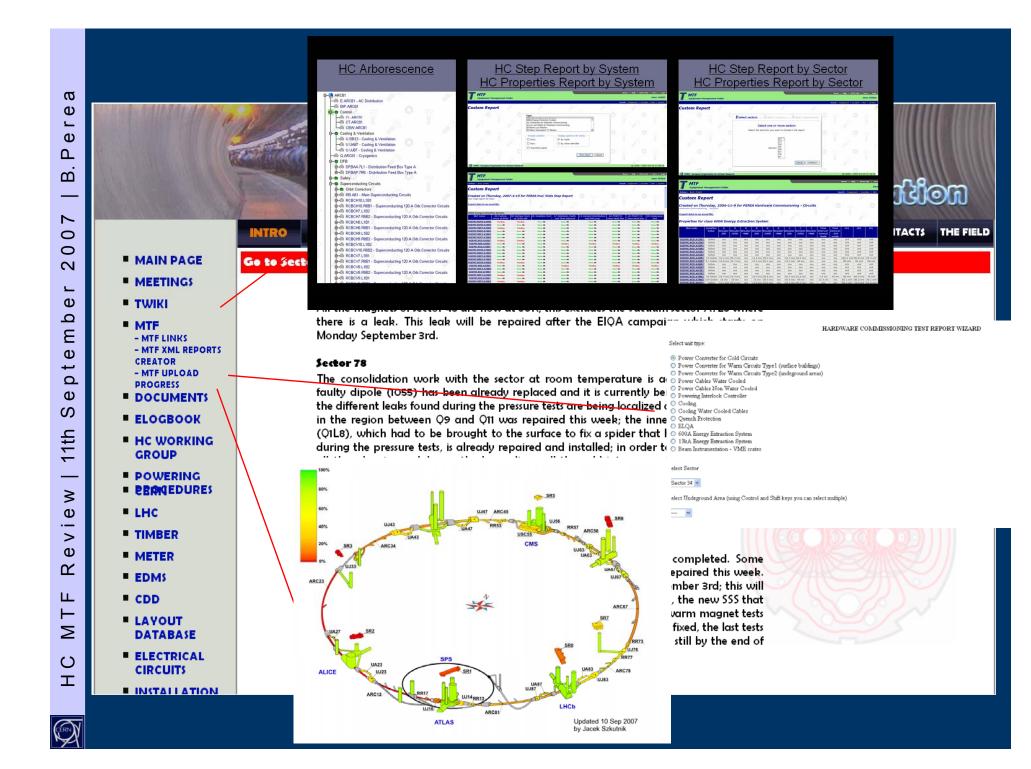
monthly reports

Profile

Implementation Automatic upload inbox I Modification of uploaded data I Step and Property Reports (by system and geographical) I MTF Access rights management

MTF Team

Sophie Chalard


Marcin Sobieszek

Catherine Laverriere

Sonia Mallon

Rafal Lyzwa

EDMS.Support @ cern.ch ++

What is traced in the HC MTF ?

Slot Identifier: RPTE.UA43.RB.A34 *Other Identifier:* None *Description:* Power Converter for Cold Circuits Slot

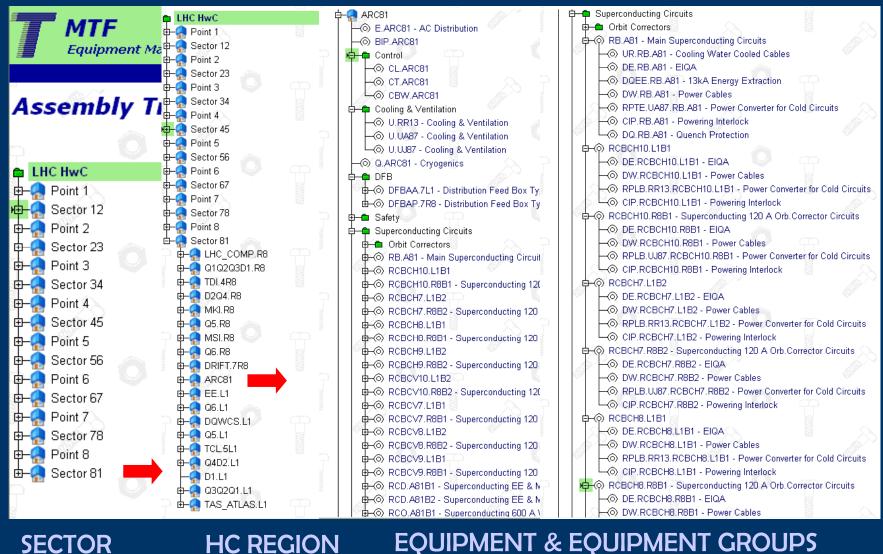
					Sh	ow Last Repe
Job Id	R/E Status	Res.	Description	•	Started	Ended
13597524	Done	Ok	10-HCA PCSCT-PT	Converter Connected to Grid	2006-09-11	2006-09-11
13597525	Done	Ok	12-HCA PCSCT-PT	Fast Power Abort Test	2006-08-16	2006-08-17
13597526	Done	ok	14-HCA PCSCT-PT	Loss of Cooling Water (*)	2006-09-11	2006-09-11
13597527	Done	Ok	16-HCA PCSCT-PT Tuned (*)	Convert.On/Control Loop	2006-09-11	2006-09-11
13597533	Done	Ok	18-HCA PCSCT-PT	Test of EE with Current	2006-08-29	2006-08-29
13597532	Cancelled	Cancelled	20-HCA PCSCT-PT	Check of Current Sensor (*)	2006-08-29	2006-08-29
13597528	Done	Ok	22-HCA PCSCT-PT	PC Remote Operation Tests	2006-08-24	2006-08-24
<u>13766154</u>	R Done	Ok	22-HCA PCSCT-PT Tests (*)	PC Remote Operation	2006-08-28	2006-08-28
13597529	Done	Ok	24-HCA PCSCT-PT	8-Hour Heat run	2006-08-24	2006-08-24
13597535	Cancelled	Cancelled	25-HCA PCSCT-PT Warm (*)	MQM Squeezing Tests at	2006-08-24	2006-08-24
13597531	Done	Ok	26-HCA PCSCT-HR	. 24-Hour Heat Run	2006-08-28	2006-08-28
<u>13597530</u>	Done	Ok	28-HCA PCSCT-HR Temp (*)	. 24-Hour Monit. Air/Water	2006-08-28	2006-08-29

1. Validation of the tests performed to the equipment

2. Report documents, journals, EDMS, etc.

3. External Properties (LDB) + Property Values (test variables) + Parameters (historical tracking)

Main Slot data Installation & Commissioning Documents Actions : Attach document	New York				
774792 v.1 12-HCA PCSCT-PT Fast Power Abort Test-RPTE.UA43.RB.A34 Doc. page RB.A34_Interlock_tests doc (109 Kb)	In Work	/ Main Y Slot data / Installation & Comm Actions : Edit External Links	issioning 🕻 Documents 🔪		
775475 v.1 24-HCA PCSCT-PT 8-Hour Heat run-RPTE.UA43.RB.A34	In Work		No external data link	exists	
Doc. page RPTE.UA43.RB.A34_8HrsHeatRuns_UA43_09_26_26_suyker txt (з кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@V_MEAS@09_26_ sdds (зе кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@V_REF@09_26_30 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@I_REF@09_26_30 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@I_REF@09_26_30 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@ST_FAULTS@09_ sdds (149 кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@I_MEAS@09_26_ sdds (282 кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@STATE_PC@09_26_ sdds (282 кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@STATE_PC@09_26_ sdds (153 кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@STATE_PC@09_2 sdds (153 кь) 8HrsHeatRuns_UA43_suyker_RPTE.UA43.RB.A34@SUB_51@acquisitionTimest sdds (391 кь))_500@00@ <u>sdds</u> (260 кb) _500@00@ <u>sdds</u> (214 кb) 26_30_500@0@ 30_500@0@ 6_30_500@0@	Property Values Property Isolation Value A Breaker IRD A Breaker ZVRD A Breaker MSW B Breaker IRD B Breaker MSW Z Breaker IRD Z Breaker ZVRD	Nominal ¥alue	Value 15.8 15.8 20.2 15.5 20.6 45 49.2	Unit Gohm ms ms ms ms ms ms ms ms
776029 v.1 26-HCA PCSCT-HR 24-Hour Heat Run-RPTE.UA43.RB.A34	In Work	Z Breaker MSW Time interval-Normal Mode			ms ms
Doc. RPTE.UA43.RB.A34_24HrsHeatRuns_UA43_13_56_27_delphine txt (3 Kb) page 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@V_MEAS@13_56_ sdds (000 Kb) 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@V_REF@13_56_31 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@I_REF@13_56_31 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@I_REF@13_56_31 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@I_REF@13_56_31 24HrsHeatRuns_UA43_delphine_RPTE.UA43.RB.A34@SUB_51@ST_FAULTS@13_ sdds (266 Kb)	 1_000@0@ <u>sdds</u> (880 кь) _000@0@ <u>sdds</u> (711 кь)	Time interval-korna Node Time interval - SOF mode Ura Urb Urc Utotal		89.8 82 84.7 432.5	ms mV mV mV mV


How is the data organized ?

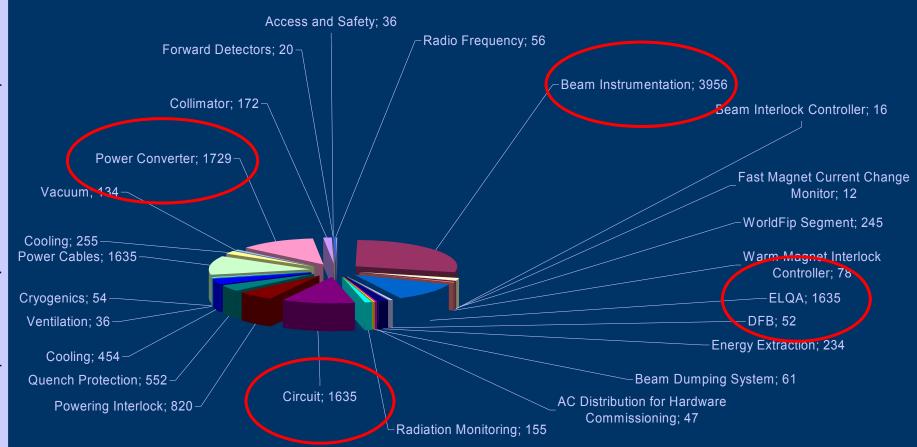
Systems (*Slots*) are organized in groups (*Classes*) sharing the same testing procedures (*profile*): they are commissioned through the same test sequence (*Steps*). If parameters are measured they are stored as *properties*.

σ Φ _ Φ ۵ ш ~ 0 0 \sim <u>ب</u> Φ Δ Ε Φ <u>-</u>+ Q Φ S 11th ≥ Φ ----> Φ Ľ ш ⊢ Σ \mathbf{O} Т

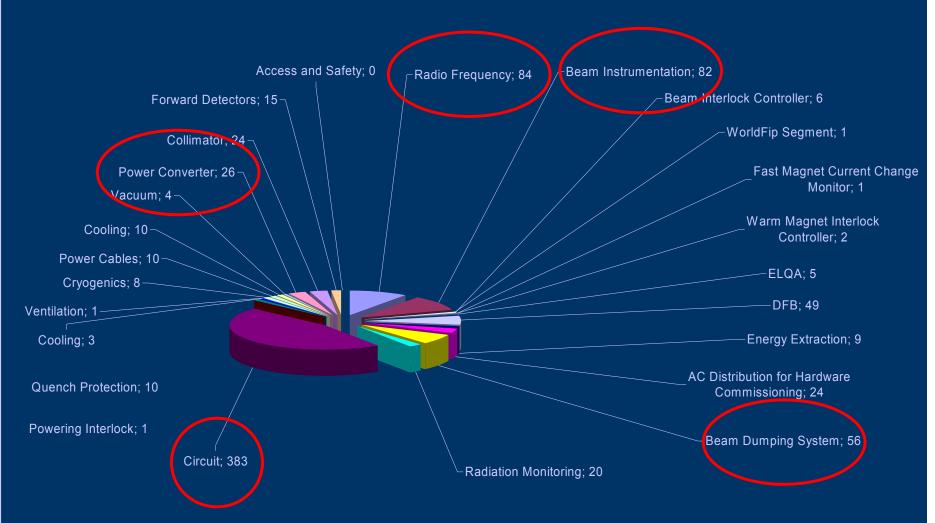
The data is linked to the systems (slots), which are geographically and functionally distributed within the LHC Ring, organized in Sectors and Regions

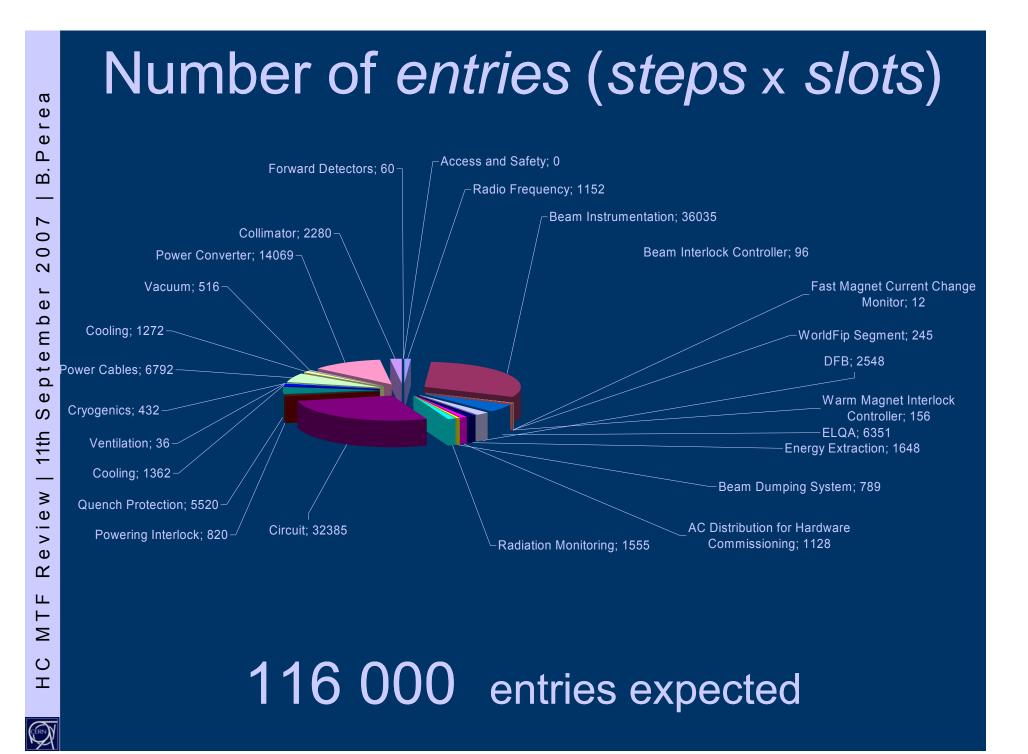
EQUIPMENT & EQUIPMENT GROUPS

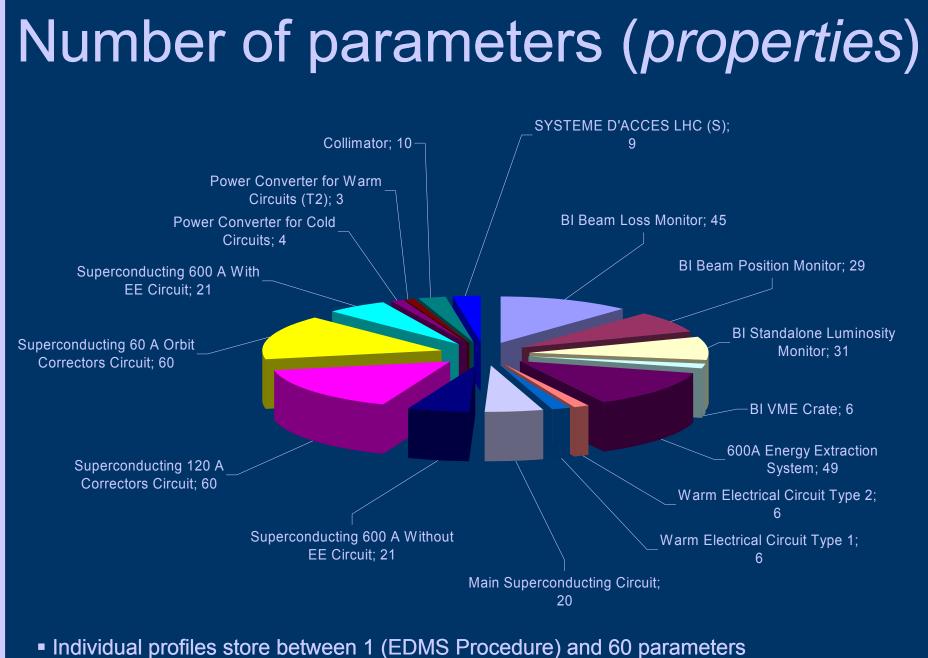
The population of the systems within the arborescence is now 100% automatic once established the criteria to locate the system, which may be geographical or functional


Class	Nr. of slots in MTH	Nr. of slots in the Tree	Nr. of slots not in the Tree	Nr. of slots not in MTF
CIB	16	16	0	0
CIF	12	12	0	0
CIW	78	63	<u>15</u>	0
Radio Frequency	56	56	0	0
Cryogenics	54	54	0	0
Power Cables	1635	1635	0	0
Cooling	583	579	<u>4</u>	0
Powering Interlock Controller	820	820	0	0
Quench Protection	552	552	0	0
DFB	52	52	0	0
Radiation Monitoring - Standard RP	80	76	4	0
Radiation Monitoring Air, Water, Standalone	75	63	12	0
WorldFip	245	243	2	0
Energy Extraction 600A	202	202	0	0
Energy Extraction 13kA	32	32	0	0
Ventilation	35	35	0	0
Power Converter	1729	1729	0	0
Circuit	1635	1635	0	0
Beam Interlock Controller	16	16	0	0
Fast Magnet Current change Monitor	12	12	0	0
MKI Injection Kickers	8	8	0	0
Collimator	160	160	0	0
BV01	133	88	133	<u>88</u>
BLM	2624	2624	0	0
BPM	1175	1175	0	0
BTV	37	37	0	0
BCTF	10	10	0	0
BCTD	4	4	0	0
BGI	4	4	0	0

Orders of Magnitude

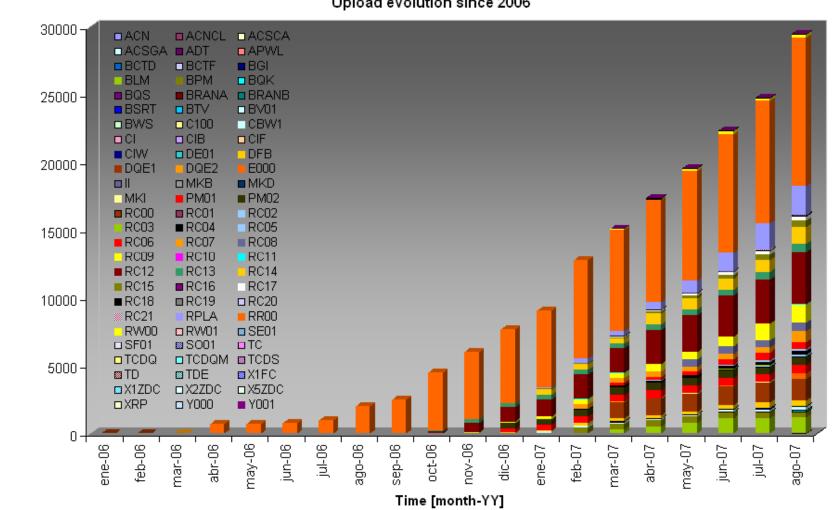

Number of Systems (slots)


• ~ 14 000 Systems organized within ~ 70 classes


 Major Systems in terms of slots are (classes): Beam Instrumentation / Power Converters / Circuits / EIQA & Systems directly linked to the circuits

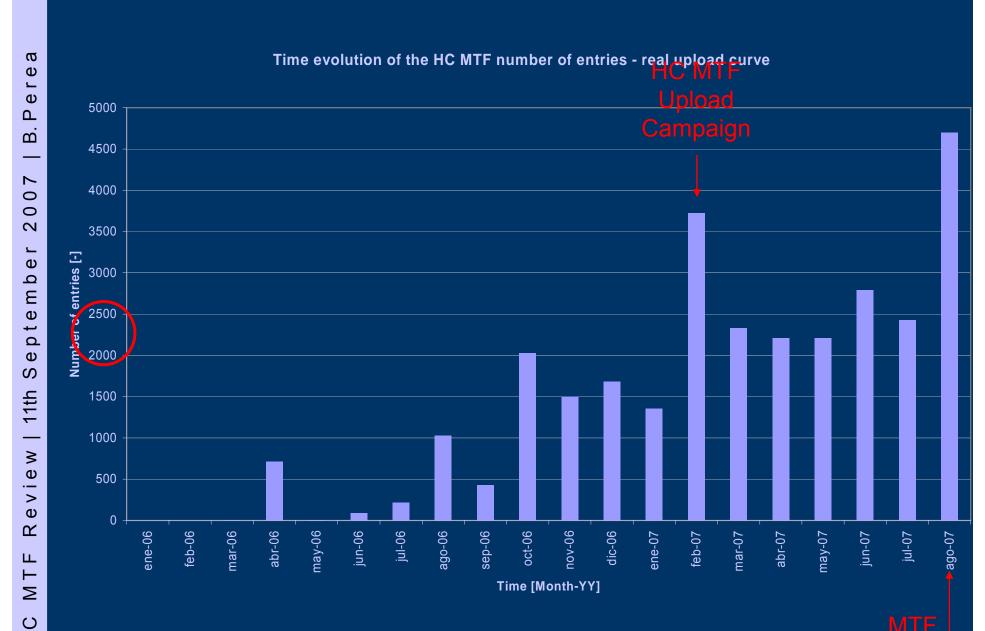
Number of tests per system (*steps*)

- Individual profiles can range from 1 to 100 steps
- The systems that trace in more detail are Circuits, RF, Beam Dumping System, BI and PC



Classes tracking more parameters are: Circuits, Energy Extraction and BI

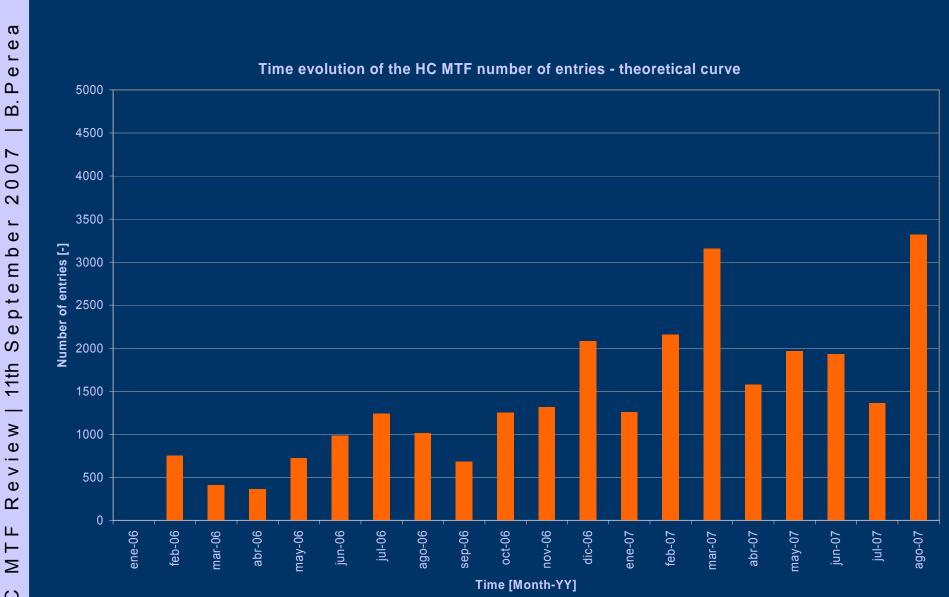
Upload rate 2006-2007



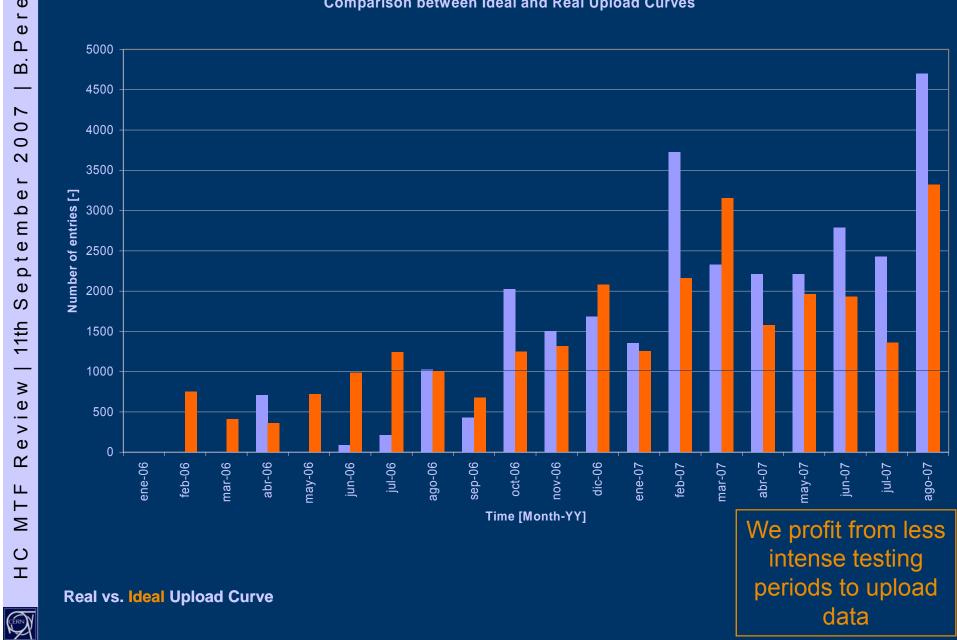
24% of the entries are filled

Upload evolution since 2006

(FRN)



Т


Ŵ

Ideal Upload Curve

 \sim 0 0 \sim ے Φ ptemb Φ S 11th ____ v i e w Φ Ľ ш \vdash Σ C Т

Comparison between Ideal and Real Upload Curves

σ

Φ ے Φ ۵

ы.

____ \sim 0

0 \sim

> <u>ب</u> Φ

р Ш

p t e

Φ

S

11th

≥

< i e

Φ

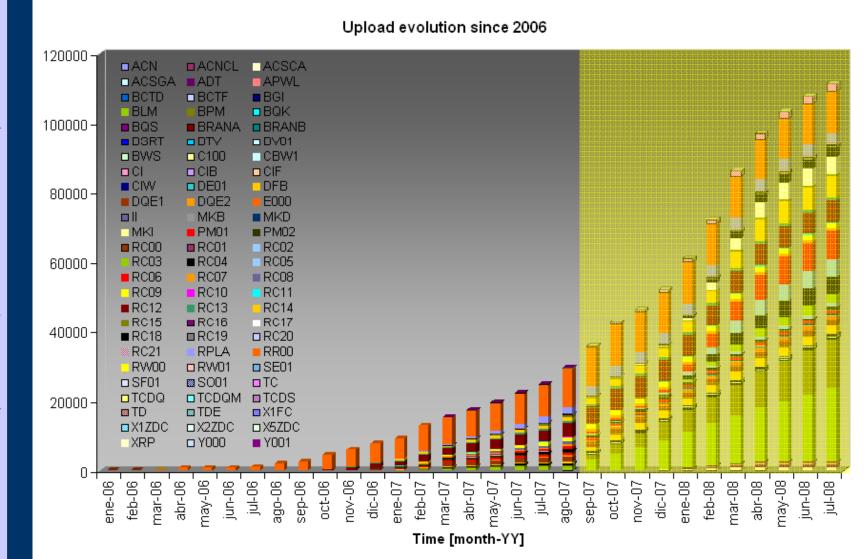
Ľ

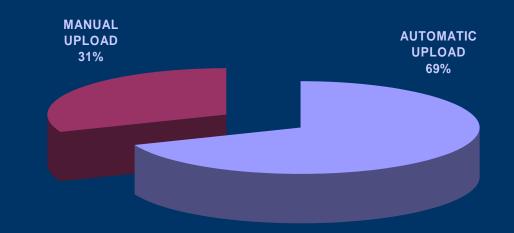
ш \vdash

Σ

C

Т


Expected upload rate 2007-2008


σ

EXTRAPOLATION !!

Manual & Automatic Upload

Automatic Upload is used by:

- BLM & BPM
- WorldFip Segments
- Warm Magnet Interlock Control
- ELQA for Warm/Cold Circuits
- Energy Extraction Systems
- AC Distribution (*)
- RAMSES
- Warm Electrical Circuits
- SC Circuits
- Powering Interlock
- Quench Protection
- Cooling
- Power Cables
- Power Converters

Manual Upload is used by:

- DFBs
- BSRT & BTV & BCTD & BCTF
- Injection Kicker
- RAMSES
- Ventilation

Automatic Upload is made through XML files copied into \\cern.ch\dfs\Users\h\hardco

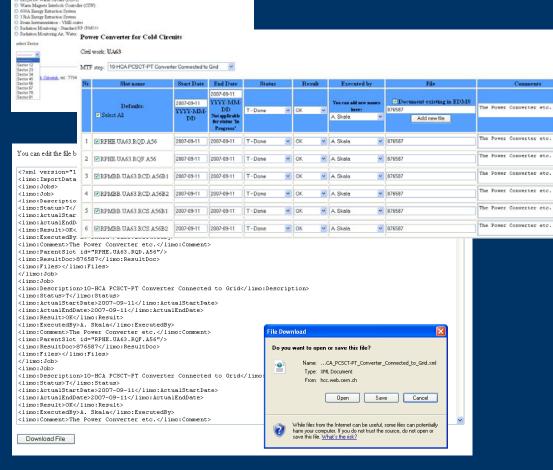
m\MTF folder and notified to Malgorzata Macuda or copied to the MTF Sequencer folder (only the Sequencer for the Superconducting Circuit tests)

O Powering Tests for Cold Circuit O PIC1 and PIC2 Circuits Tests

ower Converter for Cold Circuit

Transfer Line Electrical Circuits (RC20) Power Cables Water Cooled Power Cables Non Water Cooled

ring Interlock Controller

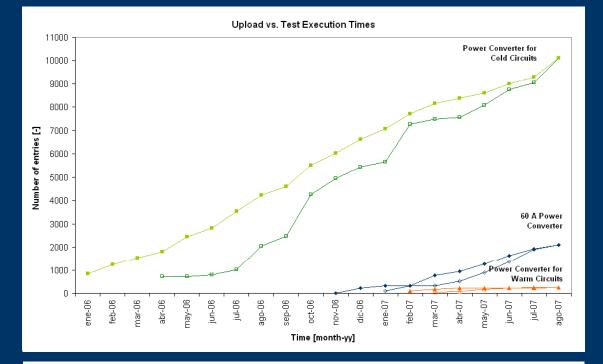

ELQA for Cold Certain (EC14) ELOA for Warm Certain (DE0)

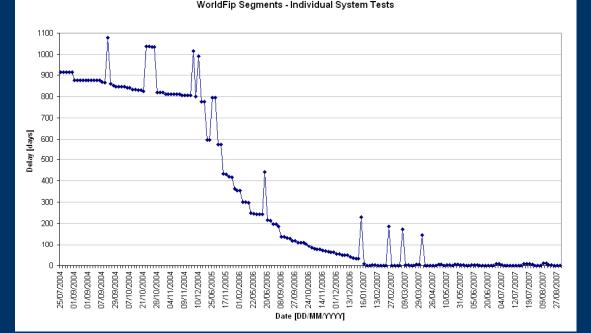
power converter for Van Caruta Type1 Power Converter for Warn Caruta Type2 Power Converter for Warn Caruta Type2 Power Converter for 40 A Orbit correctors Warn Bertrical Caruta Powered from Underground Areas (BC00) Warn Bertrical Carut Powered from Surface (BC01)

 There are still a number of incidences while uploading data due to inexact syntax of the XML files.
 See Gosia's talk

 HC Team (Jacek) has prepared a number of tools to facilitate the upload, either through XML file creator or by automatically converting XLS files to XML files (in particular for properties). See Jacek's demo

XML file creator accessible from http://hcc.web.cern.ch/hcc/

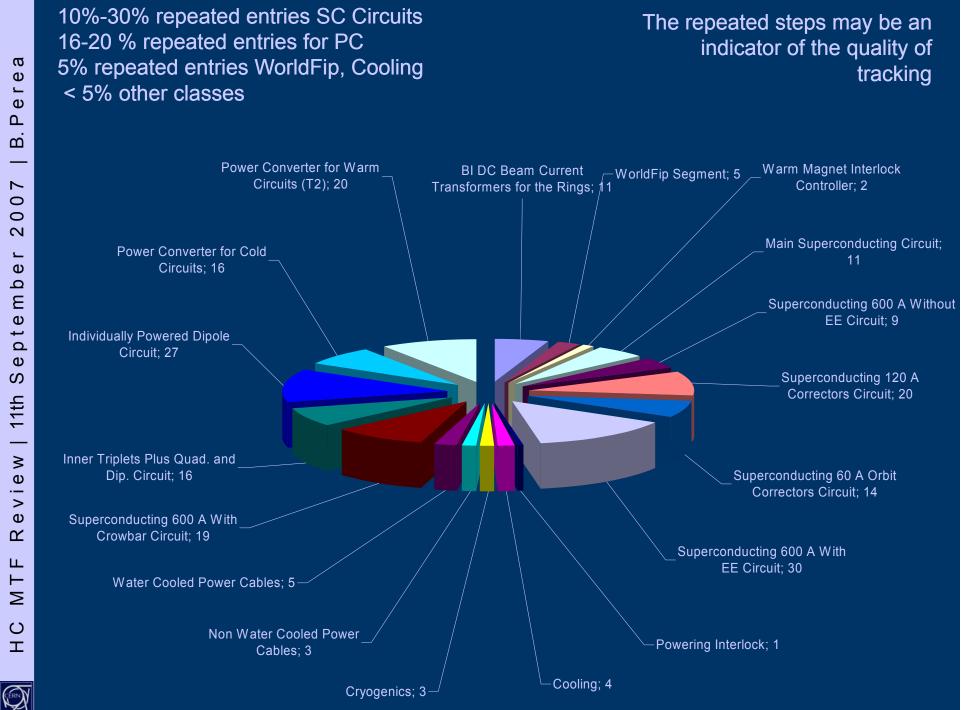

Integrating data upload within the system tests


Upload times have dramatically decreased for most of the systems, from a few months to a few weeks in most of the cases !

Example could be the comparison between upload and test execution dates for the three profiles of Power Converters

or WorldFip Segments who have reduced to zero their delay to upload the data

YES !!! It looks like the data upload becomes a last step after data analysis!!



Comments [1.5%]

Quality of the Data

Repeated Steps [8%]

Documentation [26%]

σ Φ ے ወ ۵ ш ~ 0 0 \sim _ Φ Ω Ε Φ **-**+ d Φ S 11th ____ ≥ Φ · — > Φ СĽ ш \vdash Σ \mathbf{O} Т

The associated documentation is also an indicator of the data quality

Circuits, Energy Extraction Systems, Worldfip and ELQA for Warm Circuits are those linking more documentation to their entries

System	% entries with documents
Quench Protection	3
Cryogenics	3
SYSTEME D'ACCES LHC (S)	5
Powering Interlock	7
BI Synchrotron Radiation Telescope	13
Radiation Monitoring - Standard RP	19
Radiation Monitoring Air, Water, Standalone	25
Power Converter for 60A Orbit Correctors	32
Power Converter for Warm Circuits (T2)	35
Power Converter for Cold Circuits	41
Warm Electrical Circuit Type 2	46
600A Energy Extraction System	48
Warm Electrical Circuit Type 1	50
Inner Triplets Plus Quad. and Dip. Circuit	69
Individually Powered Dipole Circuit	73
Superconducting 600 A Without EE Circuit	74
Superconducting 600 A With Crowbar Circuit	76
Superconducting 120 A Correctors Circuit	79
Superconducting 600 A With EE Circuit	86
13kA Energy Extraction System	86
Main Superconducting Circuit	97
WorldFip Segment	99
ELQA for Warm Circuits	100
Superconducting 60 A Orbit Correctors Circuit	100

Layout & MTF direct link

🔽 🄁 Go 🛛 Links 🎽 📆 🔻 Address 🙆 http://layout.web.cern.ch/layout/default.aspx?ID=1374039 LHC FUNCTIONAL LAYOUT DATABASE Search Mechanical & Optic (MAD) | Search Systems | Search Electrical | Interfaces | Classifications | Utilities Navigators FUNCTIONAL POSITIONS LAYOUT HOME - BACK DCUM OFFICIAL DCUM ELEC. F. P. | INTERFACES POSITION OPTIC AT/ACR CIVIL MTF LHC F.P. EXPERT NAME RING RING V A B C BEAM FAMILY PHASE STATUS More VERSION ID TYPE U OBJ. HIERARCHY EQUIPMENT NAME NAME WORK OF END START NAME 1st LSS 486.0507 BLMQI BLMQI.A12R1 1374039 Elec.Obj. Ψ. MIDDLE 486.0507 BLMQI.12R1.B2I3 MQ RI18 0.4990 0 0 0 0 DESIGN Details STUDY - 🛧 Installation 1 Entry HOME - BACK LAYOUT DB jueves, 09 de noviembre de 2006 12:42:26 Interpretation of the second secon 🖌 🄁 Go 🛛 Links 🎽 📆 🗸 Home | Help | EDMS site | News | Login MTF User: PEREA Equipment Management Folder Search : Equipment | Location | Slot | System Slot Folder: Installation Jobs Assembly Tree Slot Identifier: BLMOI.A12R1 Q LQATH.12R1 - Arc SSS Other Identifier: None - BLMQI.A12R1 - BI Beam Loss Monitor Description: BI Beam Loss Monitor —
 O BLMQI.B12R1 - BI Beam Loss Monitor
 - BLMQI.C12R1 - BI Beam Loss Monitor - BLMQI.D12R1 - BI Beam Loss Monitor - O BLMQI.E12R1 - BI Beam Loss Monitor Main Slot data Installation & Commissioning Documents → ◎ BLMQI.A13R1 - BI Beam Loss Monitor Actions : Create Job Show Last Re ÷ Job Id |R/E |Status Res. Description Started Ended INC Pending 10-BLM Insulation Test 13832114 Pending 20-BLM High Tension Test 13832115 Pendina 30-BLM Acquisition Chain Test 13832116 Pending 40-BLM Acquisition Chain Test via RA Source 13832117 © CERN - 2006-11-09 12:44:57 Q CERN - European Organization for Nuclear Research

(ERN)

Coherence between Layout and MTF systems is continuously checked through an interface prepared by Jacek

Class	Description	Nr. of slots in MTF	Nr. of slots in Layout	Nr. of missing slots	Nr. of false slots
ACN	RF Normal Conducting Cavity	16	16	0	0
ACNCL	RF Coaxial Line for Normal Conducting Cavity Module	0	0	0	0
ACSCA	RF Superconducting Bare Cavity	16	16	0	0
ADT	RF Transverse Damper	8	8	0	0
APWL	RF Instrumentation	12	12	0	0
BCTD	BI DC Beam Current Transformers for the Rings	4	4	0	0
BCTF	BI Fast Beam Current Transformer	10	10	0	0
BGI	BI Ion Profile Monitor	4	4	0	0
BLM	BI Beam Loss Monitor	2624	2624	0	0
BPM	BI Beam Position Monitor	1175	1175	0	0
BQK	BI Stripline Kicker for PLL Measurement	4	4	0	0
BQS	BI Schottky Monitor	4	4	0	0
BRANA	BI TAN Type Luminosity Monitor	4	4	0	0
BRANB	BI Standalone Luminosity Monitor	4	4	0	0
BSRT	BI Synchrotron Radiation Telescope	2	2	0	0
BTV	BI Beam Observation TV Monitor	37	37	0	0
BV01	BI VME Crate	133	133	0	0
BWS	BI Wire Scanner Profile Monitor	2	2	0	0
CI	Machine Protection System	0	0	0	0
CIB	Beam Interlock System	16	16	0	0
CIF	Fast Magnet Current Change Monitor	12	12	0	0
CIW	Warm Magnet Interlock Controller	78	78	0	0
DE01	ELQA for Warm Circuits	63	63	0	0
DQE1	600A Energy Extraction System	202	202	0	0
	13kA Energy Extraction System	32	32	0	0
E000	AC Distribution	47	47	0	0
MKB	Diluter Dump Kicker	20	20	0	0
MKD	Ejection Dump Kicker	30	30	0	0
MKI	Injection Kicker	8	8	0	0
PM01	Radiation Monitoring - Standard RP	80	80	0	0
	1	75	75	0	0
	Warm Electrical Circuit Type 2	24	24	0	0
RC01	Warm Electrical Circuit Type 1	20	20	0	0
	Main Superconducting Circuit	24	24	0	0
		72	72	0	0
RC04	Superconducting 120 A Correctors Circuit	284	284	0	0
RC05	Superconducting 60 A Orbit Correctors Circuit	752	752	0	0

X

116 000 entries [24% filled] NCRs [249]

70 classes

Comments [1.5%]

Documentation

[26%]

The system is becoming a passive structure to receive data. Flexibility to obtain maximum profit from the MTF in profile definition, upload and follow up.

> Repeated Steps [8%]

14 000 slots

Upload Tools

THANKS !!!

σ

Questions from the users to MTF

How is it going to be followed once HC Phase is over ?

Maintenance periods

Automatic upload of Properties (historic)

Dependencies between steps

N/A status

Automatic flag when a new run is going to be performed

Filtering when viewing the profiles

