Search for Cabibbo-suppressed decay $\Lambda_b \to (J/\psi)p\pi$

Patrick Koppenburg (NIKHEF) Alexandru-Ionuț Băbeanu (CERN)

August 13, 2012

Physical context

Figure: Cabibbo-suppressed decay: $\Lambda_b \to (J/\psi)p\pi$

Figure: Cabibbo-favoured decay: $\Lambda_b \to (J/\psi)pK$

▶ interesting for CKM - physics: $\frac{|V|}{|V|}$

Overview of method

- ► MC11a-Signal tree (S)
- ► MC11a-Background tree (B)
 - Inclusive (J/ψ)
- ▶ Data tree (D)

Overview of method

- ► MC11a-Signal tree (S)
- MC11a-Background tree (B)
 - Inclusive (J/ψ)
- Data tree (D)

- Study variables for S and B
- Train NN on S and B
- Test NN on S and B
- ▶ Use NN on D
- Optimize NN-cut on D

Finding discriminating variables

Figure: Combined S and B proton p_z histogram

Training the Neural Network (NN)

▶ 18 discriminating variables

Using NN on real data

Figure: NN output distribution

Figure: NN invariant mass distribution

▶ Observed peak at $M_{\Lambda_h} = 5620 \text{ MeV}$!

Conclusions and Outlook

• first observation of the $\Lambda_b \to (J/\psi)p\pi$!

Conclusions and Outlook

- first observation of the $\Lambda_b \to (J/\psi)p\pi$!
- mass-fitting the peak
- s-plot analysis
- studying the $p\pi$ mass distribution
- extracting branching fractions ratios:

$$\Lambda_b o (J/\psi)p\pi: \Lambda_b o (J/\psi)pK$$

Backup

Stripping and loose Cuts

Data: 2011 Reco12-Stripping17b. $1 \, \mathrm{fb^{-1}}$.

Stripping line: BetaSLambdab2JpsippiDetachedLine based on

StdLooseProtons, NoPIDPions and

StdMassConstrainedJpsi2MuMu. Vertex

 $\chi^2/\text{dof} < 5 \text{ and } \tau_{\Lambda_b} > 0.2 \text{ ps.}$

Candidates are filled in DecayTreeTuple. Several instances of

DecayTreeFitter are run with various mass

hypotheses.

Trigger: No trigger requirements are made yet. This will be

studied later.

List of discriminating variables

- B_FullFit_chi2_B
- acos(B_DIRA_OWNPV)
- B_FDCHI2_OWNPV
- B_FullFit_ctauErr
- ► B_MINIP
- ▶ pplus PT
- pplus_PZ
- pplus_PIDp
- pplus_PIDK
- pplus_IPCHI2_ORIVX
- pplus_MINIPCHI2

- piminus_PZ
- piminus_PT
- piminus_PIDK
- piminus_IPCHI2_ORIVX
- piminus_MINIPCHI2
- Psi_FD_OWNPV
- nLongTracks

More on the Neural Network

- ▶ 5 Λ_b variables
- ▶ 6 *p* variables
- ▶ 5 π variables
- ▶ 1 (J/ψ) variable and 1 global event variable

Testing NN on MC-background (combinatorial)

Figure: NN efficiency function of (total) invariant mass

Testing NN on MC-signal

Figure: NN efficiency function of $p\pi$ invariant mass

Optimizing the NN output

Figure: Maximising Punzi FoM on Signal (MC) and Data sidebands

Figure: Optimal NN Inv. mass distrib.

▶ NN efficiency for netOutput > 0.975: $\epsilon_{NN} = 0.41$

Punzi Figure of Merit

- $\qquad \qquad \frac{\epsilon_{NN}}{\frac{\alpha}{2} + \sqrt{B_{NN}}}$
- $ightharpoonup \epsilon_{NN}$, B_{NN} defined within [5600, 5640]
- ▶ B_{NN} from linear extrapolation from [5640, 5800] to [5600, 5640]
- ightharpoonup ϵ_{NN} obtained from S