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Event generators

pdf’s hard
scattering

parton
shower

hadronization and decay

Underlying event: Interactions of the proton remnants.
Multiple interactions: more than one pair of partons undergo hard scattering
Pile-up events: more than one hadron-hadron scattering within a bunch crossing



Exact perturbative calculations

Leading order (LO) and next-to-leading order (NLO):

At leading order only Born amplitudes contribute:
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At next-to-leading order: One-loop amplitudes and Born amplitudes with an additional
parton.
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Infrared divergences and the Kinoshita-Lee-Nauenberg theorem

In addition to ultraviolet divergences, loop integrals can have infrared divergences.

For each IR divergence there is a corresponding divergence with the opposite
sign in the real emission amplitude, when particles becomes soft or collinear (e.g.
unresolved).

The Kinoshita-Lee-Nauenberg theorem: Any observable, summed over all states
degenerate according to some resolution criteria, will be finite.



General methods at NLO

Fully differential NLO Monte Carlo programs need a general method to handle the
cancelation of infrared divergencies.

• Phase space slicing

– e+e−: W. Giele and N. Glover, (1992)

– initial hadrons: W. Giele, N. Glover and D.A. Kosower, (1993)

– massive partons, fragmentation: S. Keller and E. Laenen, (1999)

• Subtraction method

– residue approach: S. Frixione, Z. Kunzst and A. Signer, (1995)

– dipole formalism: S. Catani and M. Seymour, (1996)

– massive partons: L. Phaf and S.W. (2001), S. Catani, S. Dittmaier, M. Seymour and Z. Trócsányi, (2002)



The dipole formalism

The dipole formalism is based on the subtraction method. The NLO cross section is
rewritten as
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The approximation dσA has to fulfill the following requirements:

• dσA must be a proper approximation of dσR such as to have the same pointwise
singular behaviour in D dimensions as dσR itself. Thus, dσA acts as a local
counterterm for dσR and one can safely perform the limit ε → 0.

• Analytic integrability in D dimensions over the one-parton subspace leading to soft
and collinear divergences.



The subtraction terms

The approximation term dσA is given as a sum over dipoles:

dσA = ∑
pairs i, j

∑
k 6=i, j

Di j,k.

Each dipole contribution has the following form:

i
j

k

Di j,k = −
1

2pi · p j
A (0) ∗

n

(

p1, ..., p̃(i j), ..., p̃k, ...
) Tk ·Ti j

T2
i j

Vi j,kA (0)
n

(

p1, ..., p̃(i j), ..., p̃k, ...
)

.

• Colour correlations through Tk ·Ti j.

• Spin correlations through Vi j,k.

The dipoles have the correct soft and collinear limit.



The physical origin of the correlations

• In the soft limit, amplitudes factorize completely in spin space, but colour
correlations remain.

• In the collinear limit, amplitudes factorize completely in colour space, but spin
correlations remain.
Complete factorization after average over azimuthal angle.



Basics of shower algorithm

Starting point: Collinear factorization.

Probability for particle a to split into particles b and c:

dPa = ∑
b,c

αs
2πPa→bc(z)dtdz, t = ln

(

Q2

Λ2

)

b
ca

Splitting kernels: Pq→qg(z) = CF
1+ z2

1− z
,

Pg→gg(z) = CA
(1− z(1− z))2

z(1− z)
,

Pg→qq̄(z) = TR
(

z2 +(1− z)2) .

Pq→qg has a soft singularity for z → 1, Pg→gg has a soft singularity for z → 1 and z → 0.



The Sudakov factor

Probability that a branching occurs during a small range of t:

dI (t) = dt

z+(t)
Z

z−(t)

dz∑
b,c

αs

2π
Pa→bc(z),

Sudakov factor: Probability that no branching occurs between t0 and t1:

∆(t1, t0) = exp
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A typical shower algorithm

• Choose the next scale t according to the Sudakov factor.

• Choose the momentum fraction z according to Pa→bc(z).

• Choose the azimuthal angle uniform or according to
spin-dependent splitting functions.

• Insert the new particle.

• If t > tmin goto first step, otherwise stop.



Angular ordering

Amplitude for the emission of a soft gluon from a q-q̄-antenna:

dσg = dσ0
αsCF

π
dk0

k0

dφ
2π

d cosθ
1− cosθqq̄

(1− cosθqg)(1− cosθgq̄)

1− cosθqq̄

(1− cosθqg)(1− cosθgq̄)
= Wq +Wq̄, Wq =

1
2

[

cosθgq̄− cosθqq̄

(1− cosθqg)(1− cosθgq̄)
+

1
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]
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1
2

[

cosθqg− cosθqq̄

(1− cosθqg)(1− cosθgq̄)
+

1
(1− cosθgq̄)

]

.

Z dφ
2π

Wq =

{ 1
1−cosθqg

, if θqg < θqq̄,

0 otherwise

Angular ordering: No emission if θqg > θqq̄ !



Momentum conservation

1. Momentum conservation:

pa = pb + pc

2. Momenta are on-shell, for massless particles:

p2
a = p2

b = p2
c = 0.

3. Momenta are real.

b
ca

For 1 → 2 splittings it is not possible to satisfy all three requirements.



Recent developments

• Rewriting and improvement of Pythia, Herwig and Ariadne,
Sherpa as a new event generator
Sjöstrand, Skands; Gieseke, Stephens, Webber; Lönnblad, Krauss, Kuhn, Schälicke, Soff;

• Uncertainties of parton showers
Gieseke; Stephens, van Hameren; Bauer, Tackmann

• Matching of parton showers with fixed-order tree level matrix elements
Catani, Krauss, Kuhn, Webber; Mangano, Moretti, Pittau; Mrenna and Richardson;

• Matching of parton showers with NLO
Frixione, Gieseke, Laenen, Latunde-Dada, Motylinski, Nason, Oleari, Ridolfi, Webber; Krämer, Mrenna, Soper; Odaka,

Kurihara; Giele, Kosower, Skands;

– Parton shower based on the dipole formalism
Proposal by Nagy, Soper;

Implementation by Schumann, Krauss and Dinsdale, Ternick, SW.



Parton shower based on the dipole formalism

2 → 3 splittings: An emitter-spectator pair radiates off an additional particle.
Can satisfy momentum conservation and on-shell conditions.

Splitting kernels of the Sudakov factors are given by the dipole splitting functions.
Correct behaviour in the collinear and the soft limit.

No conceptional distinction between initial- and final-state shower.

Natural choice to combine with NLO



Technical details

• 4 cases for emitter-spectator-pair: final-final, final-initial, initial-final, initial-initial.

• Only the singular terms of the dipole splitting functions are unique.

• Freedom to choose the finite terms.

• For a parton shower we would like to have a probabilistic interpretation:
The splitting functions have to be non-negative everywhere.

– Adjust finite terms
– Rearrange terms between Di j,k and Dk j,i



Technical details

Sudakov factor:

∆i j,k(t1, t2) = exp
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 , t = ln
−k2

⊥

Q2 .

Dipole phase space:
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Numerical results: Electron-positron annihilation

Qmin = 2GeV
Qmin = 1GeV

C

C σ〈
C
〉

dσ dC

10.90.80.70.60.50.40.30.20.10

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Qmin = 2GeV
Qmin = 1GeV

D

D
σ〈

D
〉

dσ dD

10.90.80.70.60.50.40.30.20.10

3.5

3

2.5

2

1.5

1

0.5

0

Qmin = 2GeV
Qmin = 1GeV

1−T

1−
T

σ〈
1−

T
〉

dσ
d(

1−
T

)

0.50.450.40.350.30.250.20.150.10.050

6

5

4

3

2

1

0



Numerical results: Four-jet angles

mod
strict

modified Nachtmann-Reiter angle

|cosθ∗NR|

1 σ
dσ

d |
co

sθ
∗ N

R
|

10.90.80.70.60.50.40.30.20.10

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

mod
strict

Körner-Schierholz-Willrodt angle

cosθKSW

1 σ
dσ

d
co

sθ
K

SW

10.80.60.40.20-0.2-0.4-0.6-0.8-1

1

0.9

0.8

0.7

0.6

0.5

0.4

mod
strict

Bengtsson-Zerwas angle

|cosχBZ|

1 σ
dσ

d|
co

sχ
B

Z
|

10.90.80.70.60.50.40.30.20.10

3

2.5

2

1.5

1

0.5

mod
strict

angle α34

cosα34

1 σ
dσ

d
co

sα
34

10.80.60.40.20-0.2-0.4-0.6-0.8-1

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



Z/γ∗-production at the Tevatron and at the LHC
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Summary

Implementation of a new parton shower algorithm based on the dipole formalism.

Transverse momentum as evolution variable.

Momentum conservation and “angular ordering” are inherent.

Initial- and final-state partons are treated on the same footing.

Natural choice to combine with NLO.


