Forward quark scattering at LHC

Hans-Joachim Drescher Frankfurt Institute for Advanced Studies Johann Wolfgang Goethe-Universität

> Mark Strikman Pennsylvania State University

•Suppression of forward scattering on a dense target

- •Forward scattering on nucleus in colliders and air showers application to air showers
- •Suppression of forward scattering in pp at LHC use as centrality trigger

Black Body Limit

When probing large gluon densities at small x, interactions reach the Black Disk Limit, where interaction probability is close to 1.

In this field partons get a high pt-momentum kick

We model qA scattering within color glass condensate approach (McLerran Venugopolan-model)

$$\frac{d\sigma^{el}}{d^{2}b} = (1 - e^{-Q_{s}^{2}/4\pi\Lambda_{QCD}^{2}})^{2}$$
$$\frac{d\sigma^{tot}}{d^{2}b} = 2(1 - e^{-Q_{s}^{2}/4\pi\Lambda_{QCD}^{2}})^{2}$$

 \rightarrow Suppression of soft physics

→ Suppression of forward scattering (no leading particle)

We neglect energy loss of scattered partons

Dumitru, Jalilian-Marian PRL 89 (2002)

Gerland, Dumitru, Strikman PRL 90 (2003) If one assumes indep. fragm. of scattered partons :

BBL Monte Carlo for use in air shower calculations

valence quarks: GRV94 PDF (xf(x) dominant at high x)

gluons:
$$x g(x, q_t^2) \propto \frac{1}{\alpha_s} \min(q_t^2, Q_s^2(x)) (1-x)^4$$

(Kharzeev, Levin, Nardi, NPA 2004)

Forward scattering suppressed due to independent fragmentation of leading quarks

x_F

Xmax of air showers

Phys.Rev.Lett. 94:231801,2005

=> Xmax Sensitive to forward scattering

Forward quark scattering for proton-proton at LHC

For central p-p collisions density in forward region is high enough to get same effect as in pA scattering.

We construct a very simple model to show the qualitative features of this approach

Density in target and projectile modeled by two-gluon form factor gives spatial distribution of gluons in transverse plane

$$F_g(x,\rho) = \frac{m_g^2}{2\pi} \left| \frac{m_g \rho}{2} \right| K_1(m_g \rho)$$

Frankfurt, Strikman, Weiss Phys.Rev.D69:114010,2004

Determine q_t for each scattered quark

$$g(x, r_P, Q^2) = g(x_P, Q^2) F_g(x_P, r_P, Q_s^2)$$
 GPD

$$Q_{s}^{2}(x_{T},r_{T})=Q_{s,0}^{2}\left|\frac{x_{T}}{x_{0}}\right|^{\lambda}F_{g}(r_{T},Q_{s}^{2},x_{T})$$

Solve with iteration

$$\frac{d\sigma}{d^2q_t} \sim \frac{1}{Q_s^2 \log(Q_s/\Lambda)} \exp\left|\frac{-\pi q_t^2}{Q_s^2 \log(Q_s/\Lambda)}\right|$$

Condition for large q_t-kick

$$Q_s > 1 \text{ GeV}$$
 and $q_t > 0.75 \text{ GeV}$

String modeling for n quarks scattered

Strings fragment via Lund model (Pythia)

Impact parameter distribution of scattered quarks

Feynman x of baryons

Our simple model is a full Monte Carlo model forward scattering is strongly suppressed for n=2,3

Use suppression of forward scattering as a centrality trigger at LHC

Trigger: no baryon with x_F>x_{Trigger}

Combine with dijet-centrality trigger:

Conclusions

- Suppression of forward scattering should be visible at LHC in proton-proton scattering due to
 - high CMS energy
 - forward scattering
- Quarks scatter off dense target (small x) and fragment independently
- possible use of this information:
 - centrality trigger for pp collisions
 - Possibility to study pp collisions at high gluon densities
 - Study QCD background for central collisions where new particle production will show up