

Florian Bechtel, Peter Schleper, Hartmut Stadie (Hamburg Univ.) on behalf of the CMS QCD@low PT group HERA and the LHC Working Group Week

DESY, October $31^{\text {st }} 2007$

- Pythia 8
- Double high P_{T} interactions
- Validation plans

UH

ition

- First operational release of complete C++ rewrite
- Standalone generator with new user interface
- Not yet a replacement of the old code in every respect
- Some new Physics aspects
- transverse-momentum-ordered showers
- interleaving with multiple interactions
- Brief introduction: arXiv:07I0.3820
- Presentation by Torbjorn Sjostrand in GENSER meeting I0/24
- http://indico.cern.ch/getFile.py/access?
contribld=4\&resld=0\&materialld=slides\&confld=22105
- Download
- http://www.thep.lu.se/~torbjorn/Pythia.html
- Hard processes
- pp, $\mathrm{p} \overline{\mathrm{p}}, \mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}$(no ep, no incoming photons)
- Most Pythia 6 processes available (no SUSY, no Technicolor)
- Default PDF is CTEQ5L (can link LHAPDF sets)
- Possible to use different PDF set A for the hard interaction and PDF set B for subsequent showers and multiple interactions
- Parton showers
- Initial- and final-state algorithms based on $\mathrm{P}_{\mathrm{T} \text {-ordered }}$ evolution
- Branching $\gamma \rightarrow$ fermion pair in final-state evolution possible - Initial-state evolution, multiple interactions and final-state evolution interleaved into one common decreasing P_{T} sequence
- Multiple interactions and beam remnants
- Full functionality introduced in Pythia 6.3
- Rescaled parton densities defined after $I^{\text {st }}$ interaction taking into account the nature of previously extracted parton
- Final-state colour reconnection: colours of partons from two subscatterings can be interarranged such that the total string length is reduced
- Underlying-event processes: QCD $2 \rightarrow 2$, prompt $\gamma, \bar{c}, b \bar{b}$, low-mass

Drell-Yan pairs, t-channel $\gamma^{*} / Z^{0} / W^{ \pm}$

- Can set two hard interactions in the same event
- Hadronisation
- Lund string fragmentation

Many interesting new features to study multiple parton interactions

- Definition: two parton-parton hard scatterings take place within one pp collision
- Provides information on distribution of partons within the proton and on possible parton-parton correlations

- Double parton scattering is dominant contribution to production of two b-quark pairs at LHC energies (Phys. Rev. D 66, 0740 I2 (2002))
- Sizeable background to Pp $\rightarrow \mathrm{WH}+X$ with $\mathrm{W} \rightarrow \mathrm{IV}, \mathrm{H} \rightarrow$ bБ from double parton collisions (Phys. Rev. D 6I, 077502 (2000))
- Expect non-negligible contributions in other channels as well:
- Z b b
- W+jets, Wb+jets and WbБ+jets
- $\mathrm{t} \overline{\mathrm{t}} \rightarrow$ IIVvb
- t $\mathrm{b} \rightarrow \mathrm{b}$ БIV
- b $\mathrm{b} \rightarrow$ jets
- production of many jets when $\mathrm{P}^{\min } \cong 25 \mathrm{GeV}$
- Final states of interest
I. (jet+jet)+(jet+jet) i.e."mini-jets" (combinatorics)

2. (jet+jet)+(b-jet+b-jet) (b-tagging)
3. (jet+jet)+($\gamma+j e t$) i.e. $\gamma+3$-jets

- enlarged jet acceptance wrt. (I.) (use single photon trigger)
- profit from better resolution in photon angle and energy
- CDF measurement of $\gamma+3$-jet final states
- Phys. Rev. D 56, 38 I I (I997)
- Double parton scattering model from mixing independent sets of CDF data
- CDF data can only be described when adding $\mathbf{> 5 0 \%}$ contribution from double high $\mathbf{P}_{\mathbf{t}}$ scatterings
- CDF measured $\gamma j j j$ final states and studied the azimuthal angle between P_{T} vectors of $\mathrm{\gamma j}$ and jj

$\Delta S, \varphi$-angle between $P_{\text {T's }}$ of pairs (radians)
- Multiple interactions framework can add further interactions to build up realistic underlying event
- further interactions occasionally quite hard
- Pythia 8 allows to specify the second hard interaction rather precisely
- No Sudakov factors included for both hard interactions
- Description is almost completely symmetric between $I^{\text {st }}$ and $2^{\text {nd }}$ process
- $2^{\text {nd }}$ hard process obeys exactly the same selection rules for process properties and phase space cuts as the first
- In particular: $\mathrm{PT}^{\text {min }}$ cut for $2 \rightarrow 2$ applies to $\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ process alike
- Central collisions likely to have more activity than the average, peripheral less - "Trigger bias" effect: selecting events with a hard process means you favour events at small impact parameter (origin of "pedestal effect" in Pythia) - Matter overlap profile \rightarrow enhancement/depletion factor $f_{\text {impact }}$ is chosen event-by-event

Double Gaussian matter distribution assumed

- Cross section for DP comprised of scatterings A and $B(A \neq B)$:

$$
\sigma_{D P}=\frac{\sigma_{A} \sigma_{B}}{\sigma_{e f f}}
$$

where $\sigma_{\text {eff }}$ - effective cross section, i.e. process-independent scale factor (from the overlap of the matter distributions of the two interacting hadrons)

- $\sigma_{\text {eff }}$ related to dispersion of distribution in the number of collisions:

$$
\langle N(N-1)\rangle=\langle N\rangle^{2} \frac{\sigma_{h a r d}}{\sigma_{e f f}}
$$

- Experimental indication: $\sigma_{\text {eff }}=1 / \mathrm{mb}$
- NB: in Pythia, $\sigma_{A B}=<f_{\text {impact }}>\sigma_{A} \sigma_{B} / \sigma_{\text {Non-Diffractive }}$
\rightarrow Pythia 8 "predicts" $\sigma_{\text {eff }}=\sigma_{\text {Non-Diffractive }} /<\boldsymbol{f}_{\text {impact }}>$
$\left(\right.$ here: $\left.\sigma_{\text {eff }}=54.71 \mathrm{mb} / 2.5 \approx 20 \mathrm{mb}\right)$

- No angular correlations on parton level
- Partons from proton sea contribute dominantly
- Use bare Pythia 8 and estimate $\sigma_{\mathrm{DP}}\left(\mathrm{PP} \rightarrow \gamma_{\mathrm{jjj}}\right)$
- $\hat{P}^{T}>20 \mathrm{GeV}$, $\mathrm{I}^{\text {st }}$ hard process: prompt $\gamma, 2^{\text {nd }}$ hard process: hard QCD $2 \rightarrow 2,|\eta(\gamma)|<2.7$

$E(V)[\mathrm{GeV}]$	$O[$ nb] $]$
$20-60$	2.04
$60-120$	1.03
$120-180$	0.57
$180-240$	0.22
$240-300$	0.08
$300-7000$	0.08

Expect sizeable cross section contribution from double parton scattering

- First production version of Pythia 8 available: Pythia 8.100 - Allows simulation of $2^{\text {nd }}$ hard interaction
- Expect non-negligible background contribution from multiple parton-parton interactions to many final states of interest at the LHC
- Study multiple parton-parton interactions in large variety of final states

