

Validation of double high Printeractions in Pythia 8

on behalf of the CMS QCD@low P_T group HERA and the LHC Working Group Week DESY, October 31st 2007

- Pythia 8
- Double high P_T interactions
- Validation plans

Oct 20th: Pythia 8.1 released

- First operational release of complete C++ rewrite
 - Standalone generator with new user interface
 - Not yet a replacement of the old code in every respect
- Some new Physics aspects
 - transverse-momentum-ordered showers
 - interleaving with multiple interactions
- Brief introduction: arXiv:0710.3820
 - Presentation by Torbjorn Sjostrand in GENSER meeting 10/24
 - http://indico.cern.ch/getFile.py/access?
 contribld=4&resId=0&materialId=slides&confld=22105
- Download
 - http://www.thep.lu.se/~torbjorn/Pythia.html

Physics summary (I)

Hard processes

- pp, $p\bar{p}$, e^+e^- , $\mu^+\mu^-$ (no ep, no incoming photons)
- Most Pythia 6 processes available (no SUSY, no Technicolor)
- Default PDF is CTEQ5L (can link LHAPDF sets)
- Possible to use different PDF set A for the hard interaction and PDF set B for subsequent showers and multiple interactions

Parton showers

- ullet Initial- and final-state algorithms based on P_T -ordered evolution
- Branching $\gamma \rightarrow$ fermion pair in final-state evolution possible
- Initial-state evolution, multiple interactions and final-state evolution interleaved into one common decreasing P_{T} sequence

Physics summary (2)

- Multiple interactions and beam remnants
 - Full functionality introduced in Pythia 6.3
 - Rescaled parton densities defined after Ist interaction taking into account the nature of previously extracted parton
 - Final-state colour reconnection: colours of partons from two subscatterings can be interarranged such that the total string length is reduced
 - Underlying-event processes: QCD $2 \rightarrow 2$, prompt γ , $c\bar{c}$, $b\bar{b}$, low-mass Drell-Yan pairs, t-channel $\gamma^*/Z^0/W^\pm$
 - Can set two hard interactions in the same event
- Hadronisation
 - Lund string fragmentation

Many interesting new features to study multiple parton interactions

Double Parton scattering

- Definition: **two parton-parton hard scatterings** take place within one pp collision
- Provides information on distribution of partons within the proton and on possible parton-parton correlations

DP @ LHC

- Double parton scattering is dominant contribution to production of two b-quark pairs at LHC energies (Phys. Rev. D 66, 074012 (2002))
- Sizeable background to pp \rightarrow WH+X with W \rightarrow Iv , H \rightarrow bb from double parton collisions (Phys. Rev. D 61, 077502 (2000))
- Expect non-negligible contributions in other channels as well:
 - Z b Б
 - W+jets, Wb+jets and Wb\(\bar{b}\)+jets
 - $t\overline{t} \rightarrow II \vee \vee b\overline{b}$
 - t b → b b l v
 - b b → jets
 - production of many jets when $P_T^{min} \cong 25 \text{ GeV}$

Measure the 2nd hard process

- Final states of interest
 - I. (jet+jet)+(jet+jet) i.e. "mini-jets" (combinatorics)
 - 2. (jet+jet)+(b-jet+b-jet) (b-tagging)
 - 3. (jet+jet)+(γ +jet) i.e. γ +3-jets
 - enlarged jet acceptance wrt. (1.) (use single photon trigger)
 - profit from better resolution in photon angle and energy
- CDF measurement of γ +3-jet final states
 - Phys. Rev. D 56, 3811 (1997)
 - Double parton scattering model from mixing independent sets of CDF data
 - CDF data can only be described when adding >50%

contribution from double high PT scatterings

Yjjj @ CDF

• CDF measured γ jjj final states and studied the azimuthal angle between P_T vectors of γ j and jj

 ΔS , ϕ -angle between P_T 's of pairs (radians)

Simulate the 2nd hard process

- Multiple interactions framework can add further interactions to build up realistic underlying event
 - further interactions occasionally quite hard
- Pythia 8 allows to specify the second hard interaction rather precisely
 - No Sudakov factors included for both hard interactions
 - \bullet Description is almost completely symmetric between 1^{st} and 2^{nd} process
- 2nd hard process obeys **exactly the same selection rules** for process properties and phase space cuts as the first
 - In particular: P_T^{min} cut for $2 \rightarrow 2$ applies to I^{st} and 2^{nd} process alike

Parametrization (Pythia 8)

- Central collisions likely to have more activity than the average, peripheral less
- "Trigger bias" effect: selecting events with a hard process means you favour events at small **impact parameter** (origin of "pedestal effect" in Pythia)
- Matter overlap profile → enhancement/depletion factor f_{impact} is chosen event-by-event

Double Gaussian matter distribution assumed

Parametrization (CDF)

• Cross section for DP comprised of scatterings A and B (A \neq B):

$$\sigma_{DP} = rac{\sigma_A \sigma_B}{\sigma_{eff}}$$

where σ_{eff} - **effective cross section**, i.e. process-independent scale factor (from the overlap of the matter distributions of the two interacting hadrons)

• σ_{eff} related to dispersion of distribution in the number of collisions:

$$\langle N(N-1)\rangle = \langle N\rangle^2 \frac{\sigma_{hard}}{\sigma_{eff}}$$

- Experimental indication: $\sigma_{eff} = 11 \text{ mb}$
- NB: in Pythia, $\sigma_{AB} = \langle f_{impact} \rangle \sigma_{A} \sigma_{B} / \sigma_{Non-Diffractive}$ \rightarrow Pythia 8 "predicts" $\sigma_{eff} = \sigma_{Non-Diffractive} / \langle f_{impact} \rangle$ (here: $\sigma_{eff} = 54.71 \text{ mb} / 2.5 \approx 20 \text{ mb}$)

MPI kinematics

- No angular correlations on parton level
- Partons from proton sea contribute dominantly

Cross section estimation

- Use bare Pythia 8 and estimate $\sigma_{DP}(pp \rightarrow \gamma jjj)$
- $\hat{p}_T > 20$ GeV, Ist hard process: prompt γ , 2^{nd} hard process: hard QCD $2 \rightarrow 2$, $|\eta(\gamma)| < 2.7$

E(y) [GeV]	σ[nb]
20-60	2.04
60-120	1.03
120-180	0.57
180-240	0.22
240-300	0.08
300-7000	0.08

Expect sizeable cross section contribution from double parton scattering

Summary and outlook

- First production version of Pythia 8 available: Pythia 8.100
 - Allows simulation of 2nd hard interaction
- Expect **non-negligible background** contribution from **multiple parton-parton interactions** to many final states of interest at the LHC
- Study multiple parton-parton interactions in large variety of final states