A. Yagües, Humboldt Universität zu Berlin on behalf of the ZEUS Collaboration

OUTLINE:

- HERA Collider and ZEUS detector
- Heavy quark production at HERA
- Beauty PHP : dijets + muon
- Beauty PHP: dijets + electron
- Beauty contribution to the proton structure function: $F_{2}{ }^{\mathrm{bb}}$ (DIS)
- Summary and Conclusions

The HERA ep collider:

Delivered luminosity: $190 \mathrm{pb}^{-1} 92-00$ (HERA I) $560 \mathrm{pb}^{-1}$ 02-07 (HERA II)

UIII

The ZEUS detector:

Heavy quark production at HERA

Dominant process: boson-gluon fusion

Why study heavy quark production at HERA?:

Kinematic Variables:

$$
\mathbf{Q}^{2}=-\mathbf{q}^{2}=\left(k-k^{\prime}\right)^{2} \quad \text { Neg. squared momentum transfer }
$$

(virtuality of exchanged boson)

$$
\mathbf{s}=(\mathbf{k}+\mathbf{p})^{\mathbf{2}} \approx \mathbf{4} \mathbf{E}_{\mathbf{e}} \mathbf{E}_{\mathbf{p}} \quad \text { CM Energy, at HERA } V_{\mathrm{s}}=318 \mathrm{GeV}
$$

$x=\mathbf{Q}^{2} / 2 \mathbf{p}^{\bullet} \mathbf{q}$ Bjorken scaling variable: momentum fraction of
parton interacting with lepton in infinite momentum frame (QPM)
$\boldsymbol{y}=\mathbf{p}^{\bullet} \mathbf{q} / \mathbf{p}{ }^{\bullet} \mathbf{k} \quad$ Inelasticity: lepton momentum fraction
transferred to boson in proton rest frame

Kinematic Regimes:

- Deep Inelastic Scattering (DIS): $Q^{2}>1 \mathrm{GeV}^{2}$
- Photoproduction (PHP): $\mathrm{Q}^{2}<1 \mathrm{GeV}^{2}\left(\mathrm{Q}^{2} \sim 10^{-3}\right.$, quasi-real γ)
* Test of perturbative QCD due to the hard scale given by the heavy quark mass.
\% Study of multi-scale problem: often mass scales compete with other hard scales ($\mathrm{p}_{\mathrm{T}}, \mathrm{Q}^{2} \ldots$) , additional theoretical uncertainties enter.
* Better understanding of structure of the proton

pQCD approximations: massume one dominant hard scale

Massive scheme/FO: $\rightarrow \mathbf{m}_{\mathrm{b}}$
b massive

- neglects $\left[\alpha_{s} \ln \left(Q^{2} / m_{b}{ }^{2}\right)\right]^{n} \ldots$
- reliable for $p_{T} \sim m_{Q}$

Massless scheme/NLL: $\rightarrow \mathbf{Q}^{\mathbf{2}}, \mathbf{p}_{\mathbf{T}}$

- b massless
- resums $\left[\alpha_{s} \ln \left(Q^{2} / m_{b}{ }^{2}\right)\right]^{n} \ldots$
- reliable for $p_{T} \gg m_{Q}$
- FMNR (PHP) and HVQDIS (DIS)

Variable schemes (Variable Flavour Number Scheme):

- At small $Q^{2} \rightarrow$ massive, at large $\mathrm{Q}^{2} \rightarrow$ massless
- MRST04, CTEQ6HQ...

Tagging Beauty with $\mu+$ +iets (I)

- Semileptonic decay:
$e p \rightarrow e^{\prime} b X \rightarrow \mu j j X$
- Separate b from c and uds:
- Large b mass \rightarrow large muon $\mathrm{P}_{\mathrm{T}}^{\text {rel }}$
- Large b lifetime \rightarrow large muon impact param. δ

\rightarrow Simultaneous 2-dim $\mathrm{P}_{\mathrm{T}}{ }^{\text {rel }}$ and δ fit (enhanced statistics and reduced syst.errors)

Tagging Beauty with u+jets (II)

- Compatible with previous measurements
- NLO calculations provide reasonable good description of data

$Q^{2}<1 \mathrm{GeV}^{2}$
$0.2<y<0.8$
$\mathrm{p}_{\mathrm{T}}{ }^{\mu}>2.5 \mathrm{GeV}$
$-1.6<\eta_{\mu}<2.3$
$p_{T}{ }^{\text {jet }}>7(6) \mathrm{GeV}$
$\left|\eta^{\text {jet }}\right|<2.5$

Tagging Beauty with e+iets (II)

ZEUS

Test function $T_{i, j}=\frac{\mathcal{L}_{i, j}}{\sum_{k, l} \mathcal{L}_{k, l}}$

- Measurements in good agreement within errors with theoretical predictions

Summary of PHP measurements

HERA

Cross sections for b production extrapolated using NLO calculations

Measurement of $\mathrm{F}_{2}{ }^{\text {bb }}$ with HERA-II by HI

- $\mathrm{F}_{2}{ }^{\mathrm{bb}}$ is related to double differential cross section:

$$
d^{2} \sigma^{b b} /\left(d x \cdot d Q^{2}\right)=\left(2 \pi \alpha^{2} / Q^{4} x\right)\left\{\left[1+(1-y)^{2}\right] F_{2}^{b b}\left(x, Q^{2}\right)-y^{2} F^{b}\left(x, Q^{2}\right)\right)
$$

- $\mathrm{F}_{2}{ }^{\mathrm{bb}}$ can be calculated from the ratio of measured and theory cross sections:

$$
F_{2}{ }^{\mathrm{bb}}\left(\mathrm{x}, \mathrm{Q}^{2}\right)=\left[\sigma_{\text {measured }} / \sigma_{\mathrm{NLo}}\right] \cdot F_{2}{ }^{\mathrm{bb}} \mathrm{NLO}\left(\mathrm{x}, \mathrm{Q}^{2}\right)
$$

- H1: inclusive measurement. Method based on IP used to extract the signal

Measured reduced cross section

 as a function of x in 5 bins of Q^{2}H1+ZEUS b CROSS SECTION in DIS

o ZEUS data lie above Hil data but compatible within errors
0 At high x and Q ? stilll statistically limited

- MRST04 and CTEQ6HQ differ up to factor two!
o First NNLO callculations from Robert Thome
o Within current experimentall errors, theoretical diffferences can not be yet resolved

Conclusions

\checkmark Heavy Flavour production in ep collisions is:

- good testing ground for perturbative QCD
- better understanding of multi-scale problem
\checkmark Good description achieved with NLO calculations in all measurements
\checkmark First measurement of $\mathrm{F}_{2}{ }^{\text {bb }}$ at H 1 with HERA-II data
- good agreement between both experiments and with theory (NLO, NNLO)
\checkmark Most of HERA-II data not analyzed yet:
- expect improved results soon!
- new analyses possible

BACKUP SLIDES

PDF Schemes and Parameters

PDF	Order	Scheme, Nf	μ^{2}	$\mathrm{M}_{\mathrm{t}}(\mathrm{GeV})$
-- MRST04	$\alpha_{2}{ }^{2}$	VFNS	Q^{2}	4.3
- MRST NNLO	$\alpha_{2}{ }^{3}$	VFNS	Q^{2}	4.3
- CTEQ6HQ	$\alpha_{2}{ }^{2}$	VFNS	Q^{2}	4.5
- - HVQDIS+CTEQ5F4	α_{2}^{2}	FFNS, 4	$\mathrm{p}_{\mathrm{t}}^{2}+4 \mathrm{M}^{2}$	4.75
CTEQ5F3	$\alpha_{2}{ }^{2}$	FFNS, 3	Q^{2}	4.5
MRST FF	a_{2}^{2}	FFNS, 3	Q^{2}	4.3
CTEQ6.5	α_{2}^{2}	VFNS	$\mathrm{Q}^{2}+\mathrm{M}^{2}$	4.5

Theory predictions except HVQDIS+CTEQ5F4 provided by P.D. Thompson, hep-ph/0703103

Beauty Contribution to $\mathrm{F}_{\underline{2}}$

The Structure of the Proton

Effect of parity violation

Cross section:

Long. structure function

$d^{2} \sigma /\left(d x \cdot d Q^{2}\right)=\left(2 \pi \alpha^{2} / Q^{4} x\right)\left\{\left[1+(1-y)^{2}\right] F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)+\ldots x F_{3}\right\}$

Significant at high y

Significant at high Q^{2}

- In the QPM, F^{2} can be expressed as:

$$
\left.\left.F^{2}=F_{2} e m+\left[Q^{2} /\left(Q^{2}+M_{z}^{2}\right)\right] F_{2}\right) /\right)^{\prime 2}+\left[Q^{2} /\left(Q^{2}+M_{2}^{2}\right)\right]^{2} F_{2} z
$$

is dominated by $F_{2}{ }^{\text {em }}$ contribution at low Q2

Theoretical Calculations I

- Fixed Order (FO):
- heavy quarks produced at perturbative level
- reliable for $p_{T} \sim m_{Q}$
- Frixione et.al. (FMNR) used for charm and beauty in photoproduction
- Harris and Smith (HVQDIS) used for charm and beauty in deep inelastic scattering

Theoretical Calculations II

- Next-to-leading log (NLL):
- "massless" heavy quarks: active constituents of p and g
- masses only used for final state kinematics
- reliable for $p_{T} \gg m_{Q}$
- Cacciari et. Al. and Kniehl et al. used for charm and beauty in photoproduction (only inclusive production, can not do e.g. dijets)
- No program for DIS
- Combined (FONLL):
- matched calculations of both schemes
- FO at low p_{T}, NLL at large p^{\top}

Beauty identification

Process: $\quad e p \rightarrow e b \bar{b} X \rightarrow e \mu$ jet X^{\prime}

$p_{t}{ }^{\text {rel }}$ is the momentum of the muon transverse to the axis of the associated jet (including the muon)
$p_{t}^{\text {rel }}$ spectrum is harder for b than for c
\rightarrow statistical separation using MC

$F_{2}{ }^{\text {bb }}$ measurement

The reduced cross section for data is the reduced cross section of the NLO multiplied by the ratio of data to NLO in a x, Q^{2} bin:
 measure $\mathrm{F}_{2}{ }^{\text {bb }}$ and $\mathrm{F}_{2}{ }^{\mathrm{cc}}$ with an inclusive charm and beauty sample of $57 \mathrm{pb}^{-1}$:
H1 Collab., A. Aktas et al., Eur. Phys. J. C45 (2006) 23-33

