

San Diego, April 3rd – 5th, 2012

List of sessions:

- Design and Process Hardening
- Single Event Test Facilities
- SEE on Commercial Memories
- Single-Event Transients
- Single-Event Test Methods
- Destructive SEE
- Product, Technology, System SEE

- Lot of space and army oriented topics
- Memory test (NAND flash), Point of load DC/DC converters, ADC converters, FPGAs...
- SET
- Mitigation techniques like "scrubing" (removing errors from a memory's content by re-writing it periodically with correct values)
- SEL protection by an adjustable over current detection that forces a power cycling of the full system in case of SEL detection
- Device hardening by placement of redundant blocks suficciently far apart to not be influenced by the same incident partcle

Quantity of laser aided diagnostics

Single Event Functional Interrupt

Location and Elimination

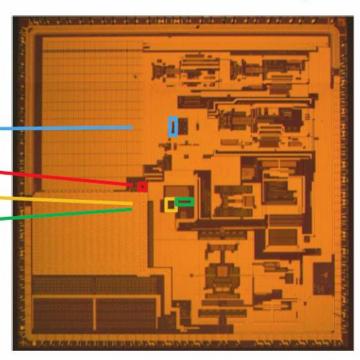
via Pulsed Laser Scanning

on a RadHard CMOS 16-bit ADC

Alfio Zanchi, Shinichi Hisano, Craig Hafer, and David B. Kerwin

Aeroflex Colorado Springs, Inc. - Colorado Springs, CO

SEE Symposium – San Diego, CA (U.S.A.) – April 3rd, 2012


SET effects due to E-H in various blocks

Pulsed laser scanning

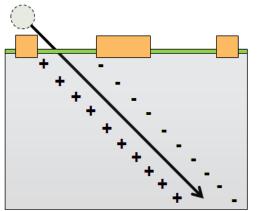
- ▼ Factors of uncertainty of the test
 - no direct pulse energy sense (photodiode) available in Aeroflex
 - is metallization completely open over sensitive block: no de-rating?

- ▼ Areas subject to laser pulses
 - Bandgap
 - POR
 - VREF generator
 - Voltage drivers

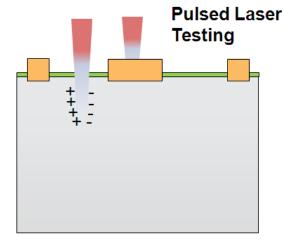
Studies of SET with short X-ray pulses

Single Event Transients Induced by the Absorption of Picosecond X-ray Pulses

David Cardoza, Stephen D. LaLumondiere, Michael A. Tockstein Steven C. Witczak, Yongkun Sin, William T. Lotshaw and Steven C. Moss


The Electronics and Photonics Laboratory
The Aerospace Corporation

4 April 2012


SEU location by Laser or X-ray

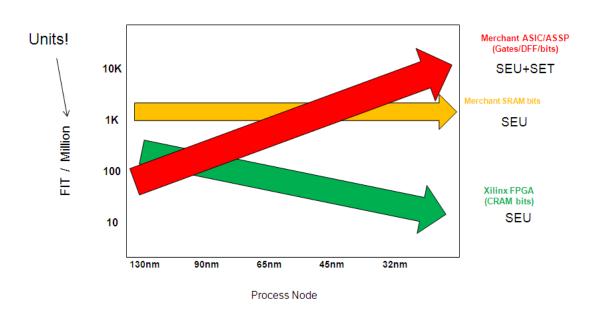
Motivation for Short X-ray Pulses

Traditional Accelerator Facility

- Large Penetration Depth
 - Generates Charge Tracks
- Penetrates Metallization
- Unless microbeam facility or mask used, difficult to spatially locate upset location.

- Focusable relatively high spatial resolution.
- Charge carriers generated in skindepth volume around focus
- Unable to penetrate metallization
- Two photon techniques can be used to evade metallization via backside illumination.

XILINX FPGA Devices SEE evaluation


From 250nm to 28nm Terrestrial SER Xilinx FPGA Devices

Austin Lesea

XILINX FPGA Devices SEE evaluation

Advances in protection of the configuration memory

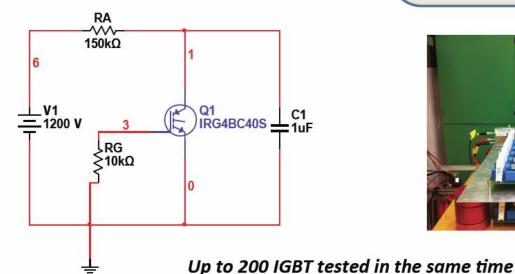
Xilinx View: our per bit FIT gets better

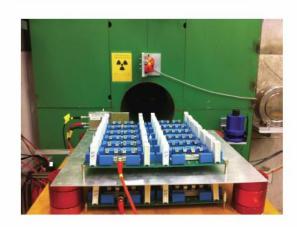
Destructive test of IGBTs

Trench Fieldstop Insulated Gate Bipolar Transistor (IGBT) failures at ground level

Antoine Touboul, Lionel Foro, Frédéric Wrobel, Frédéric Saigné

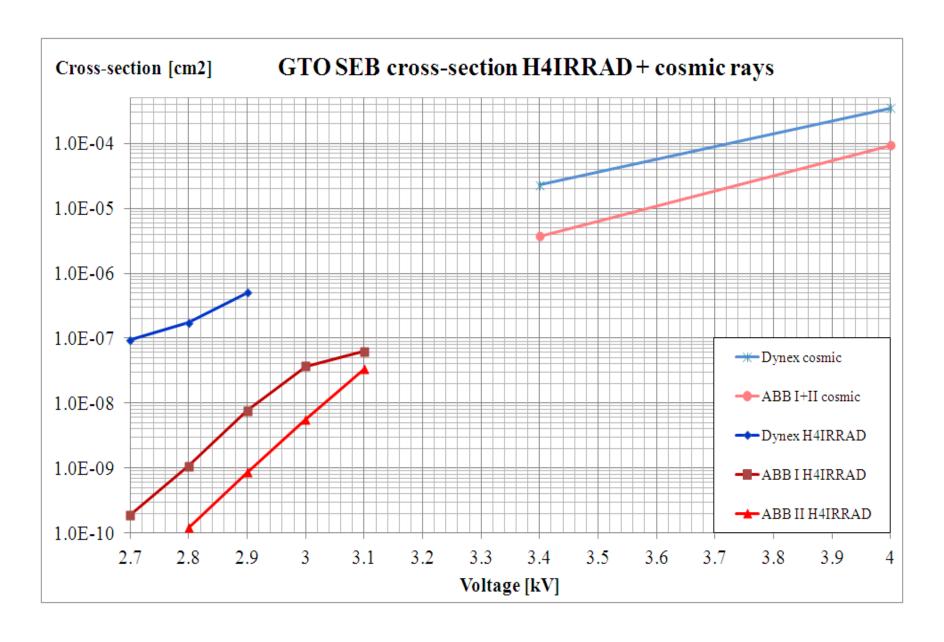
Destructive test of IGBTs

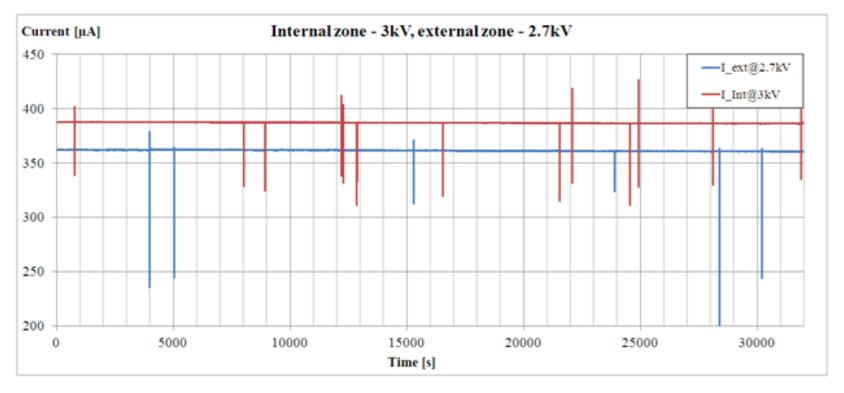

1200V-IGBT failures under ANITA atmospheric like spectrum, TSL


Sensitive state for SEE triggering is OFF state

 V_{CE} from 70% to 100% of V_{CEMAX} , V_{GF} =0V

Contrary to test of digital devices, the failure does not affect a bit but the whole device itself.


> 1 failure=1 device lost Hard to get good statistics


Non-destructive SEB tests of HV GTO-like thyristors

Measurement output example

- Influence of experienced SEBs to c-s measurement Dynex at 2.7 kV:
 - c-s = 1,22.10⁻⁷ cm² after first 49 SEBs
 - c-s = 1,24.10⁻⁷ cm² after 99 SEBs
 - c-s = 0,92.10⁻⁷ cm² after 162 SEBs

