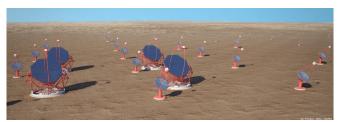
CTA: Camera calibration test-setup and plans

Trygve Buanes

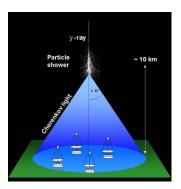
Department of physics and technology University of Bergen

23 August 2012

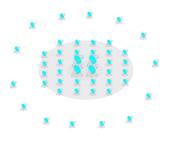


Outline

- CTA the observatory
 - CTA overview
 - Detection principle
 - The telescopes
 - The cameras
- Calibration and camera testing
 - Our place in the collaboration
 - PMT testing
 - Setup for PMT test and calibration


Cherenkov Telescope Array (CTA)

- ► The CTA project is an initiative to build the next generation ground-based very high energy gamma-ray instrument
- CTA will consist of two telescope arrays one in each hemisphere
- ► The increased number of telescopes compared to present observatories will
 - increase number of detected gamma rays
 - improve angular resolution
 - improve cosmic ray background supression
- UiB is a part of the preparatory phase (ongoing)


Detection principle

- Gamma rays (and cosmic rays) hitting the top of the atmosphere initiates a shower of both charged and neutral particles
- ► High energy charge particles may move faster through the atmosphere than the local speed of light
 - leads to emission of light in the optical wavelength range (Cherenkov radiation)
- Optical telescopes focuses light into a camera
- Shape of the emission used to distinguish gamma-initiated light from other sources

The telescopes

- The arrays will consist of three telescope sizes
 - ightharpoonup 24 metre-class telescopes with $4^{\circ}-5^{\circ}$ field of view (FOV) (low energy range)
 - ▶ 10-12 metre-class telescopes with 6° - 8° FOV (medium energy range)
 - 4-6 metre-class telescopes with around 10° FOV (high energy range, only southern array)
- Site selection is not finalised yet
 - still several sites being considered for both northern and southern array
 - decision expected by the end of 2013

The cameras

- Camera should satisfy:
 - high sensitivity around $\lambda=350$ nm, preferably with sensitivity up to $\lambda=600-650$ nm
 - ightharpoonup non-uniformities no larger than $\sim 10\%$
 - dynamic range: 1-5000 photons
 - ▶ fast response (< 1 ns for large light pulses)
 - less than 1% cross talk
 - ▶ pixel size $\sim 50mm$
- Existing Cherenkov telescopes use PMTs
 - ▶ PMT is main option also for CTA
 - ► Silicon photomultipliers (SiPM) is also considered, but primarily as an option for a later upgrade

The cameras

- Camera should satisfy:
 - high sensitivity around $\lambda=350$ nm, preferably with sensitivity up to $\lambda=600-650$ nm
 - ightharpoonup non-uniformities no larger than $\sim 10\%$
 - dynamic range: 1-5000 photons
 - fast response (< 1 ns for large light pulses)
 - less than 1% cross talk
 - ▶ pixel size $\sim 50mm$
- Existing Cherenkov telescopes use PMTs
 - ▶ PMT is main option also for CTA
 - Silicon photomultipliers (SiPM) is also considered, but primarily as an option for a later upgrade
 - ► SiPM is of interest to heavy ion group in Bergen

Our place in the collaboration

- Three different groups work on developing cameras
- The collaboration wants independent testing of camera (modules)
- We have started a collaboration with the Oscar Klein Centre in Stockholm who also has interest in PMT testing

PMT testing

Goals

- Measure PMT gain using single photon events
 - \blacktriangleright Tune light source intensity such that mean trigger probability is <1%
 - Identify pulse arrival time $t_{
 ho}$ and integrate waveform in range $t_{
 ho} \pm 10$ ns
- Measure afterpulsing using fast pulsed light source
 - determination of photon arrival time critical for good spatial resolution
 - low energy threshold is necessary for high sensitivity
 - too high afterpulsing rate create spurious signals requiring energy thresold to be raised
- Measure quantum efficiency (only Stockholm)

Setup for PMT test and calibration

- We are building a simple setup in our lab to gain experience and start testing PMTs
 - ► Fast pulsed light source (~ ns pulses, ~ kHz-MHz repetition rate)
 - Almost monochromatic LED, peaked at 404 nm
 - Tunable light intensity
- We are supported by the measurement science group in Bergen, and the department's electronics engineers

Outlook

- ► This part of the project has just started
- Collaboration with Oscar Klein Centre has been initiated, but the real fruits of the collaboration comes later
- ► We will aim to have an appropriate level of overlap between the tests in Stockholm and Bergen to have necessary cross check without doing too much work twice
- Collaboration with groups making cameras is planned, but has not started yet