Nuclear Physics and Astrophysics

Research Activities of the Nuclear Astrophysics Group at the University of Basel

•PIs: M. Liebendörfer, T. Rauscher, F.-K. Thielemann

Nuclear Physics ⇔ Astrophysics

Energy generation

Nucleosynthesis

Equation of state

Nuclear Reactions

Importance of nuclear inputs

- Energy generation
 - Evolution and lifetime of stars (+GCE)
 - Timescale and time structure of explosive events (eg. Novae, X-ray bursts, r-process)
- > Nucleosynthesis
 - Products of stars, explosive events \Rightarrow galactic chemical evolution
 - Explain observed stellar and galactic abundances
- Equation of state
 - Collapse of massive stellar cores
 - Neutron star properties
 - Black hole formation
- Strong sensitivity of astrophysics to nuclear properties!!
 - Can rule out astrophysical scenario
 - (or point to need for improved nuclear physics)
 - Different sensitivities of different scenarios/processes

Nuclear Physics Uncertainties in the rp-Path (X-ray bursts)

Schatz, et al. 1998

Prediction Test

Fit accuracy

r-Process: Dependence on Mass Formula

Nuclear Physics Problems

FREationsPLOW energies, 0-10 MeV (Thotion) (clostes, <u>meestalon)s</u>?)

Exact Metel (properties needed for reactions. (closed toolsia69000 reactions)

- Stellar Rates (thermal excitation, screening, βdecay in plasma)
 - (De)population of isomers (²⁶Al, ¹⁸⁰Ta)
- Nuclear equation of state
 - Early core collapse phase (e⁻ captures, *v* trapping, collective effects)
 - Late core collapse phase
 - Neutron star properties
 - Neutron star merger

Activities in Basel

- Astrophysics
 - Parameterized reaction network studies
 - » r-, rp-, p-, *v*p-process
 - » X-ray bursts, type Ia and type II supernovae
 - Simulations
 - » stellar evolution
 - » collapse of massive stellar cores (type II SN)
 - » galactical chem. evolution

- Nuclear Physics (relevant for astrophysics)
 - Reaction cross sections + astrophysical reaction rates (world leader!)
 - » Strong, (weak), fission
 - Properties of nuclei
 - » First principle (shell model, NN interaction)
 - Phenomenological (optical potentials, spectroscopy, GDR, masses)
 - Reaction theory
 - » Hauser-Feshbach, direct, resonant
 - » Interplay between mechanisms

Considered Nuclear Properties and Cross Sections (in no particular order!)

- <u>Reaction mechanisms, cross section, astrophys. Rates</u>
 - n-, p-, α-induced (capture, transfer)
- Nuclear level density (stat. mod. input)
 - Also single <u>low-lying states important (DC+stat. mod., from exp or shell model)</u>
 - <u>Shell quenching?</u>
- Masses (<u>Q-values</u>, sep. energies, equilibria path location)
- Optical Potentials (stat. mod. inp., DC)
- Giant resonances (stat. mod. inp.)
 - <u>Low energy behavior</u>, <u>Pygmy Resonances?</u>
- Nucleon density distribution (deformation, neutron skin)
- > <u>Fission barriers</u> (barrier heights, fragment distribution; endpoint of r-process (mainly (n,f), (β,f) , few (ν,f))
- β-decay (time scales), weak rates (e⁻-capture, ν+nucleus; collapse and explosion)

Collaborations

- Many individual collabs with scientists/groups in various countries (A, AUS, CA, CH, D, E, F, H, I, J, RUS, UK, USA): nuclear theory + experiment, astrophysics, astronomy
- International Graduate School Basel-Tübingen-Graz "Hadrons in Vacuum, Nuclei, and Stars" (SNF, DFG)
- > JINA (Joint Institute for Nuclear Astrophysics, USA)
- KaDONiS (reaction rate compilations)
- Supernova Science Center (SciDAC (Scientific Discovery through Advanced Computing) initiative, USA)
- Swiss Stellar Evolution Network
- > EU/SNF:
 - NUSTAR, EXEL (nucl. exp.), CARINA (exp+th NA), VISTARS (theory NA)
 - SCOPES (ITEP Moscow)
 - n_TOF (CERN), phase II starting
 - new: ESF project "New Physics of Compact Stars"
 - Proposals for JRA and Networks in 7th FP of the EU

The n_TOF facility at CERN

Massive Star Nucleosynthesis (quiet and explosive burning)

Reaction Mechanisms

Regimes:

- Overlapping resonances ⇒ statistical model (Hauser-Feshbach)
- 2. Single resonances \Rightarrow Breit-Wigner, R-matrix
- Without or in between resonances ⇒ Direct reactions

Massive Star Nucleosynthesis ⁶²Ni(n,γ)⁶³Ni at 30 keV

- Previous measurements vary between 12.5 and 36 mb
- Bao et al. 2000 recommended 12.5±4 mb; Rauscher et al 2002 find overproduction of ⁶²Ni
- Nassar et al. 2005: 26.1±2.5 mb
 Tomyo et al. 2005: 37.0±3.2 mb
- Mainly resonant capture, direct capture negligible
 <u>NONSMOKER Warning:</u>
- $T_9 < 0.18 (16 \text{ keV})$

M. Heil

Impact of changed $^{62}Ni(n,\gamma)$ rate

$(\alpha,n)/(\alpha,\gamma)$ Branching at ²²Ne

Ratio of results with ${}^{22}Ne(\alpha,n){}^{25}Mg$ and ${}^{22}Ne(\alpha,\gamma){}^{26}Mg$ rates varied within experimental uncertainties. The branching ratio determines the production of the weak s-process component, because the neutron source is ${}^{22}Ne(\alpha,n){}^{25}Mg$.

Problem with α+Nucleus Potentials

[1] McFadden & Satchler Pot.

[2] Avrigeanu Pot.

[3] Mohr & Rauscher 98 Pot.

[4]+exp: Somorjai et al. 1999

 144 Sm(α , γ) 148 Gd

Application: Nd/Sm ratio in pre-solar grains

Core collapse supernovae (r-Process Nucleosynthesis)

Neutrino-driven Core Collapse Supernovae

$v_e^+ n \leftrightarrow p + e^-$ heating	$v = v_e, v_\mu, v_\tau$ source terms
$\overline{v} + p \leftrightarrow n + e^+$	$e^+ + e^- \leftrightarrow v + \overline{v}$
e .	$\gamma + \gamma \leftrightarrow \nu + \overline{\nu}$
$v_e + A' \leftrightarrow A + e^-$ opacity	
$v + N \leftrightarrow v + N$	also
$\nu + A \leftrightarrow \nu + A$	$e + \gamma \leftrightarrow e + \gamma + \nu + \overline{\nu}$
	and
$v + e^- \leftrightarrow v + e^-$ thermalization	$v_{e} + \overline{v}_{e} \rightarrow v_{\mu,\tau} + \overline{v}_{\mu,\tau}$
$e^+ + e^- \leftrightarrow v + \overline{v}$	

Inner Zones of the Exploding Star

© H.-Th. Janka

 $\overline{\nu}_{e} + p \leftrightarrow n + e^{+}$ $v_e + n \leftrightarrow p + e^-$

r-Zone n-rich but inner zone (earlier time) becomes p-rich!

To study nucleosynthesis:

- Need to couple reaction networks to core-collapse simulations
- Dependence on explosion mechanism, multi-D
- Currently done via artificial explosion and postprocessing

Importance of fission modes

Full fission "cycling" for different mass models

Differences are due to different shell structure at N = 82

only one entropy component!

Martinez-Pinedo, Mocelj et al. (2007)

The vp-Process (in core collapse supernovae)

Neutrino-driven Core Collapse Supernovae

$v_e^+ n \leftrightarrow p + e^-$ heating	$v = v_e, v_\mu, v_\tau$ source terms
$\overline{v} + p \leftrightarrow n + e^+$	$e^+ + e^- \leftrightarrow v + \overline{v}$
e .	$\gamma + \gamma \leftrightarrow \nu + \overline{\nu}$
$v_e + A' \leftrightarrow A + e^-$ opacity	
$v + N \leftrightarrow v + N$	also
$\nu + A \leftrightarrow \nu + A$	$e + \gamma \leftrightarrow e + \gamma + \nu + \overline{\nu}$
	and
$v + e^- \leftrightarrow v + e^-$ thermalization	$v_{e} + \overline{v}_{e} \rightarrow v_{\mu,\tau} + \overline{v}_{\mu,\tau}$
$e^+ + e^- \leftrightarrow v + \overline{v}$	

Mimic multi-D Effects in 1D

Convective instabilities in multi-D models

- 1. Convection in proto neutron star
 - Net result: enhanced neutrino luminosities

By: reduce neutral current neutrino scattering opacities on free nucleons

 $v_x + n \rightarrow n + v'_x$ and $v_x + p \rightarrow p + v'_x$

2. Convection in heating region
Net result: enhanced energy deposition
By: increase neutrino emission / absorption cross sections in heating region

 $V_e + n \leftrightarrow p + e^-$ and $\overline{V}_e + p \leftrightarrow n + e^+$

Inner Zones of the Exploding Star

$$\overline{\nu}_{e} + p \leftrightarrow n + e^{+}$$

 $\nu_{e} + n \leftrightarrow p + e^{-}$

r-Zone n-rich but inner zone (earlier time) becomes p-rich!

To study nucleosynthesis:

- Need to couple reaction networks to core-collapse simulations
- Dependence on explosion mechanism, multi-D
- Currently done via artificial explosion and postprocessing

The basics of the vp-process

- proton-rich matter is ejected under the influence of neutrino interactions
- Nuclei form at distances where a substantial antineutrino flux is present
- > true rp-process is limited by slow β decays, e.g. $\tau(64Ge) = 64 \text{ s}$

Phys. Rev. Lett. 96 (2006) 142502 Phys. Rev. Focus, April 21, 2006 CERN Courier 46 (2006) 7

Nucleosynthesis Fluxes

Pruet et al., 2006

Nucleosynthesis Results: v-Effects

- Reduction in over-production of neutron-rich Fe, Ni
- ▶ *rp*-process pattern of elements from A=64 to 80+.
- May explain observations and GCE requirement of LEPP

Conclusion

Hans A. Bethe Prize 2008 (American Physical Society)

Prize Recipient

http://www.aps.org/programs/honors/prizes/prizerecipient.cfm?name=F...

Home | Programs | Prizes, Awards and Fellowships | Prizes | Hans A. Bethe Prize

2008 Hans A. Bethe Prize Recipient

Friedrich K. Thielemann University of Basel

Citation:

"For his many outstanding theoretical contributions to the understanding of nucleosynthesis, stellar evolution and stellar explosions through applications to individual objects and to cosmic chemical evolution."

Selection Committee:

Ronald Tribble (Chair), D. Hartmann, J.R. Wilson, R. Diehl, D. Geesaman

The End

Cataclysmic Binaries

X-ray burster

Neutron star merger

