

Computing Board Report

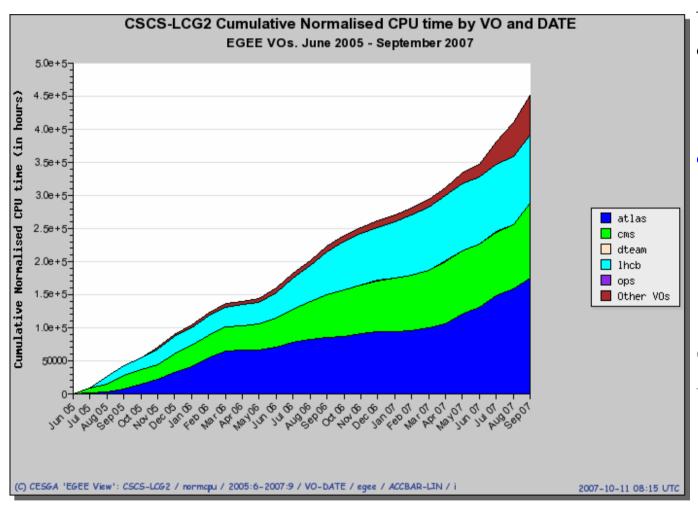
Christoph Grab and Derek Feichtinger

Contents

- Status and Plans : Swiss Tier-2 (CG)
 - Overview cluster hardware setup and upgrade path
 - → Issues with Tier-3s
 - → Personnel issues

- Status technical operations (D.Feichtinger)
 - Status operation and lessons learned
 - → Participation in data and analysis challenges of experiments (e.g. CSA07 ..)

CHIPP Plenary Meeting

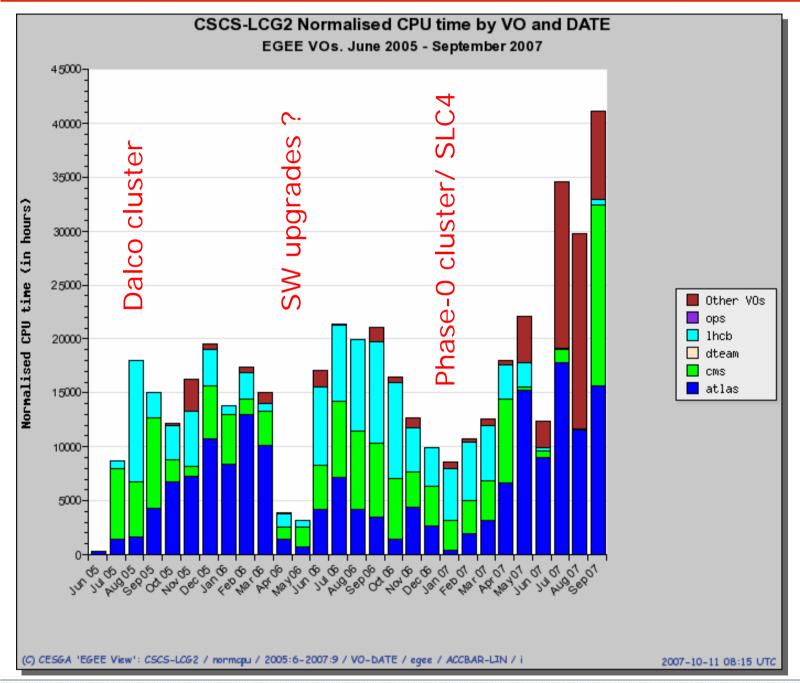


Status of the Swiss Tier-2 PHOENIX cluster

PHOENIX LCG usage (6/05-7/07)

shown is LCG-usage over last 2 years

Rest (not shown) are


- •NorduGrid + user jobs
- High efficiency user analysis jobs now ~100% efficiency

 You can get any plots via Phoenix Wiki

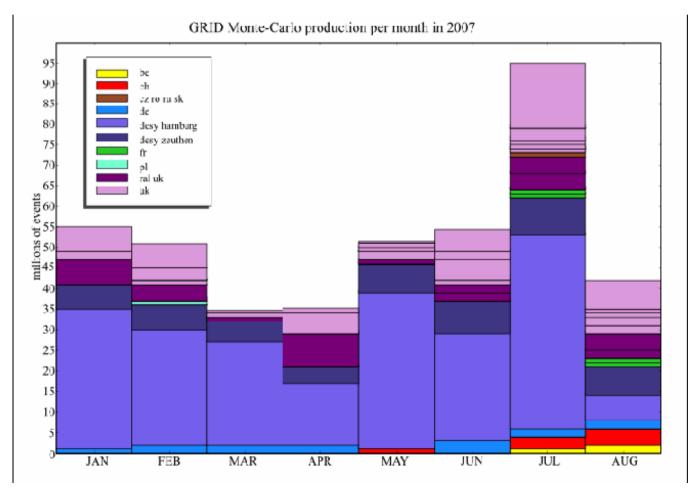
- Cluster operates stably (with high efficiency)
- chosen architecture functions well

PHOENIX usage (9/06-7/07) [ref]

LCG-usage per VO

Nordugrid and user jobs not shown

Idle cycles given to others



Comment on PHOENIX usage

Idle cycles are not wasted...
but made available to registered VOs

Illustration: H1 MC production

HW Status of PHOENIX @CSCS ('07)

- Service nodes running services:
 - → 4 management nodes for the Storage Elements
 SE/dCache: → effective 36 TB RAID5
 - → User interface, LFC, MON, GANGLIA,...
- 24 Worker Nodes (126 active cores)
- Total sum is 214 kSl2k
- 3 VO-boxes: CMS, Atlas, ARC(Nordugrid)
 and some test nodes
- see D.Feichtinger on operations details

Swiss Tier-2 at CSCS

Evolution of PHOENIX cluster

Ramp-up Plan CH-Tier-2: status Q3/07

 Actual ramp-up schedule; calculations based on Q2/07 pricing, to be installed in collaboration with SUN (phase-A)

Phases	Latest installation time	Minimum aggregate compute capacity [kSi2000]	Minimum available disc space [TB]	Cost estimates in kCHF
Existing cluster +CSCS GRID	operational	214	52	250
Phase A	End 2007	820	280	1120
Phase B	End 2008	1500	420	~ 1300
Phase C	End 2009	2600	800	~ 1300

* 1 XEON 3 GHz ≈ 1.5 kSI2000

WAN: need > 3 Gbps in 2008

have already now 1 Gbps, and can get 2x10 Gbps anytime ©

Projected Components PHOENIX Phases

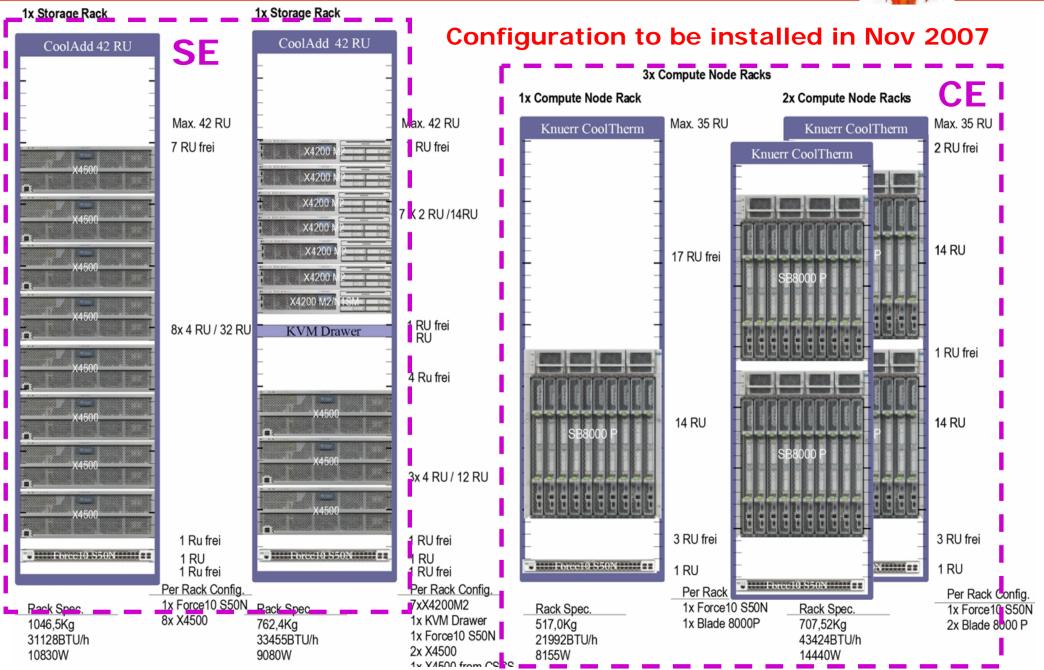
10

Assumptions:

- □ **CPUs:** Opteron 2.6 GHz CPU with 1.5 kSi2k per core.
 - Phase A Dual Core CPUs
 - ❖ Phase B Quad Core with Phase A duals upgraded to Quads
 - Phase C Quad Core
- □ **Disk: X4500:** net capacity of 17.85 TB (incl. raid, mirror, spares, overhead)

	Aggr. CPU Performance in Ksi	Additional Cores needed	Cores delivered	Aggr. Net Storage Capacity in TB	Storage needed	Storage delivered
	* *		400 (5 Blade		225TB (12.6	178,5TB (10
Phase A	680	453	Centre)	225	X4500)	X4500) +1 CSCS
			+(400 + 160) (+ a		+265TB (+14.8	+303.4TB (+17
Phase B	1440	+453 + 54 (507)	6 th Blade Centre)	490	X4500)	X4500)
			+800 (5 Blade		+420TB (+23.5	+410TB (+23
Phase C	2640	800	Chassis)	910	X4500)	X4500)
			1760 (11 Blade		910TB (50.9	910.3TB (51
Total	2640	1760	Centre)	910	X4500)	X4500)

^{**} new processors (in 2007) will boost this 680 to about 800 kSI2k



Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006

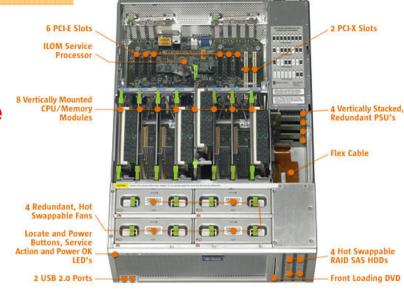
PHOENIX Phase-A Hardware

Oct. 2, 2006

Components Present Cluster [ref]

For tech-experts ...

PHOENIX
Phase-0


CPU: SUNfire X2200 M2 x64 servers: total of 26 server modules; 2x AMD Opteron dual-core 2.7 GHz with 2 GB/core (~ 1.7 kSl2k per core)

→ total of ~180 kSl2k

Disk: SUN Fire 4500 x64 Servers: 2x AMD Opteron dual-core 2.7 GHz with 4 GB/core total 2 units with each 48 disks,

→ ~ effective 35 TB

Phase-A components ~ same (or newer version, if exist)

Swiss Tier-2 at CSCS

Status Financing

Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006 13

14

Financing Tier-2 - Timeline

- Prototype financing by institutes: in 1.2004
 for CSCS-LCG cluster [10 nodes];
 granted 50 kFr
- 1st FORCE grant : requested 128 kFr. in 3.2004;
 →for "Phoenix cluster" [Prototype 15 nodes] granted 128 kCHF
- 2nd FORCE grant : requested 670 kFr in 9.2005;
 → "Phoenix cluster" [Phase A/1] in 3.2006

2nd +: addendum in 9.2006

→ "Phoenix cluster" [Phase A/1+]

3rd FORCE grant : requested 670 kFr in 9.2006;

→ "Phoenix cluster" [Phase A/2] in 3.2007

granted 500 kCHF

granted 300 kCHF

granted 190 kCHF

4th FORCE grant: requested 1300 kFr in 9.2007;

→ "Phoenix cluster" [Phase B]

asked for phase-B

- Planned 5th FORCE grant: ask for ~1300 kFr in 9.2008,
 - → "Phoenix cluster" [Phase C]
- from then on... rolling replacement; order 500 kFr / year

ETH Institute for Particle Physics

Other Financial Contributions

Additional contributions so far:

- Unis+ETH: granted in 1.2004 50 kFr invested in prototypes CSCS-LCG cluster [10 nodes]
- ETH-IPP: granted in 12.2006 50 kCHF → invested in thumper addition for PHOENIX [24 TB]
- ETH-PSI: granted in 2007: 50 kCHF → invested in PHOENIX phase A
- UNIZ: granted in 2007: 30 kCHF → invested in PHOENIX phase A

Note: also in the future: contributions by Unis and ETH are strongly suggested!

CHIPP Plenary Meeting

Local CSCS Infrastructure Details...

Infrastructure Upgrades at CSCS

Upgrades of infrastructure in machine room at CSCS in preparation for PHOENIX (and other clusters) installation:

New cooling aggregate done

new dynamical UPS done

New hydraulics in progress (due 28.10.07)

Electrical installation due 4.Nov.07

 Arrival PHOENIX HW from SUN to complete the phase-A installation

12.Nov.07

17

Installation and commissioning phase-A
 Nov. 07

Goal: full operation of phase-A in Dec. 07

thanks to CSCS (Kunszt, Guptill)

Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006

Infrastructure Upgrades at CSCS

Arrival new cooling components

20.6.07

Infrastructure Upgrades at CSCS

Installation of new dynamical UPS

22.8.07

Tier-3 Issues ...

Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006

ATLAS Tier 3 in Geneva

- a system in production since 2005, mainly as a grid batch job facility
 - → over 100'000 CPU hours in 2007 for ATLAS
- recently more interactive use by the Geneva group
 - development and testing of code, analysis of n-tuples, short batch
- size
 - → now 84 CPU, 26 TB
 - → for 1st data 188 CPU, 75 TB

thanks to S.Gadomski

The Bern ATLAS Tier 3 in 2007

Two clusters with NorduGrid front ends in production since 2005. For local physics analysis and simulation. Fills up with ATLAS central production jobs when not used by locals.

Size

~130 cores for ATLAS.
~ 33 TB disk (end of 2008 44 TB).

Usage

- ~ 120 000 Wall Time Hours in 2006.
- ~ 130 000 Wall Time Hours in 2007 so far.

thanks to S. Haug

Status CMS - Tier 3

- Presently operating: CMS-nodes at ETH (Trueb, Dambach): 5 Servers (each: 2 Dual-Xeons 3.2 GHz + eff. 4.5 TB):
- Planned: common CMS Tier-3 for ETHZ, PSI + UNIZ; located and operated at PSI; choose similar architecture as Tier-2 (planning D.F. + C.G.)

Year	2008	2009
CPU / kSI2k	180	500
Disk / TB	75	250
No of Worker Nodes	10	28
No of CPU Cores	80	224
No of Storage Nodes	4	14
No of Racks	1	3

- → emphasis on storage
- → to be operational in Q1/08

Network: aim for 6 MB/s read access per job and kSl2k; Connection of 1 Gb between PSI and CSCS.

D.Feichtinger+C.Grab

Other issues ...

Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006 24

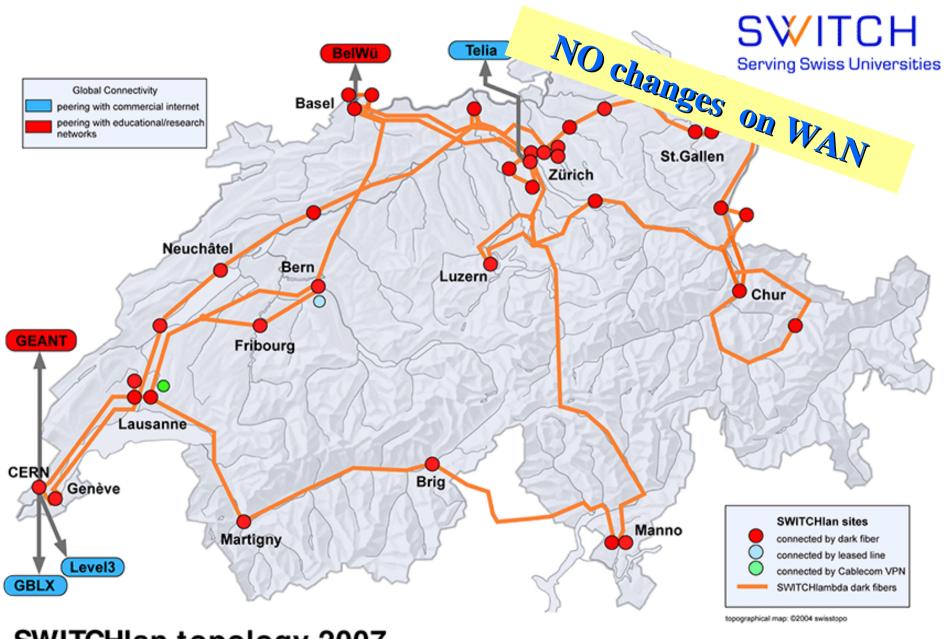
Comments on Personnel

Personnel at CSCS for GRID computing :

- Peter Kunszt; S.Maffioletti, Tom Guptill
- → new dCache expert needed Q4/07... position needs to be filled !!!
- → total: 2 GRID-FTE + about 2 FTE for operational/technical support

CHIPP personell for experiment's related operations

- CMS: D.Feichtinger (100%, PSI); → crucial contributions to the overall T2- PHOENIX operation – thanks! Tier-3: DF for operation of planned T3-cluster at PSI; Dambach/Trueb now;
- → ATLAS: Szymon Gadomski (Geneva) (100%), S.Haug (Bern)


CHIPP Plenary Meeting

- → LHCb: Roland Bernet (UniZ), parttime (no need for fulltime now)
- → CHIPP: C.Grab parttime for all expts./CHIPP: coordination Tier-2 (+ CMS-T3)
- Note: we will need a second person to support middleware for each experiment at the Tier-3!

Network: Switch backbone [ref]

SWITCHIan topology 2007

06WTCH 20070716 BHu

Status: Networking

- CSCS to the world through SWITCH
 - → Currently 1 Gbps is operational : CSCS → ZH → CERN 10 Gbs within CSCS done; 10 Gbps access needed at ZH-Hub.
 - Connection through Domodossola/Brig ready to be equipped as soon as needed (Switchlambda dark fibers are available)
 - → All GEANT (Europe) connections are through the CERN POP/CIXP
 - GEANT can also provide dedicated links to FZK, IN2P3, CNAF, RAL (if really needed)
 - → CSA07 exercise for CMS ongoing NOW ... provides valuable input to estimate future needs ...

CHIPP Plenary Meeting

Where to get information? [ref]

- Start from the Wiki pages at CH-T2 CSCS ...
 - https://twiki.cscs.ch//bin/view/LCGTier2/WebHome
 - contains lots of references: expt's, Hypernews, trouble tickets...
- Monitoring sites: which sites are up and running, free slots...
 - http://goc.grid-support.ac.uk/gridsite/monitoring/
- Whom do I contact, if I have problems with PHOENIX at CSCS?
 - Experiment specific site contact persons (DF, SG, RB)
 - → GGUS (Global Grid User Support): https://gus.fzk.de/pages/home.php

Conclusions

Message 1:

- the Swiss Tier-2 "PHOENIX" cluster has been up and running routinely for over 2 years, servicing the experiments!!
- **→ Stability has increased over time now high efficiency reached.** Thanks to D.Feichtinger and P.Kunszt etal @ CSCS
- **→** Present hardware architecture proved a good choice, continue along these lines ...

Message 2:

→ Many lessons learned from daily operation and from participations in CSA ...
 ... covered by D. Feichtinger

We'll be ready for LHC data

CHIPP Plenary Meeting

CHIPP Computing Board

A.Clark, S.Gadomski (UNI Ge) H.P.Beck, S.Haug (UNI Bern)

C.Grab (chair CCB, ETHZ)

U. Langenegger (ETHZ)

D.Feichtinger (PSI) (vice-chair CCB)

R.Bernet (UNIZH)

J. Van Hunen (EPFL)

M-C. Sawley (CSCS general manager)

P. Kunszt (CSCS Swiss Grid Initiative)

Swiss Tier-2 at CSCS

Technical issues and Lessons learned ...

Derek Feichtinger

Swiss Tier-2 at CSCS

In case of questions ...

Christoph Grab CHIPP Plenary Meeting Oct. 2, 2006 32

Points for discussion (opt)

- Amount of user resources for official production at Tier-2:
 - → CMS: 1/3 production to 2/3 users for CPU
 - → ATLAS: no CPU for users; only about 1/3 user disk at tier-2 (CPU only at tier-3)
 - → LHCb: disks at tier-2 only for user analysis (no production storage)
- •Our total estimates are based on the TDR which foresaw start-up in 2008. However the TDR-numbers and time-scales have changed.
- Q: do we want to increase/revise the total requirements now?
- → this is a moving target (requests always increase...)
- Need to setup a resource allocation structure
 - →provide tools in SW
 - →define rules how to deal with this

Timeline Swiss-T2 hardware [ref]

- April 2004: Prototypes installed at CSCS (20 nodes AMD MP)
 => 20 WN (12 kSl2k); 3.2 TB SE; → very unstable operation
- Jan 2005 : decide to acquire PHOENIX-cluster from Dalco
- June 2005: operational => 15 WN (45 kSl2k), 8 TB SE;
- Nov 2006: CSCS buys CSCS GRID-cluster (phase-0; 250 kCHF)
 CHIPP receives full access to this cluster for LHC-purposes
- Dec 2006: IPP/ETH buys SUN thumper 24 TB as addon
- Mar/April 2007: phase-0 GRID-cluster operational
 52 x 2-CPU-dualcore AMD WNs : 180 kSI2k + 1 SE a 24 TB
- Nov 12, 2007: full phase-A PHOENIX cluster delivered
- Q3/2008: phase-B PHOENIX cluster delivered ?
- Q3/2009: phase-C PHOENIX cluster delivered ?

Original: Ramp-up Plan CH-Tier-2 (opt)

•Gradual increase according to percentage of CPU to reach size of the full Tier-2 RC by (end) 2008.

Original Plans in 104

	2005	2006	2007	2008
CPU (kSl2000)	45	231	692	2307
Disk (TB)	9	79	236	787
Tape (TB)	0	0	0	0
CPU fraction w.r.t. 2008 (%)	2	10	30	100

The final goal has not changed..
 but the timeline and steps ...

* 1 XEON 3 GHz ≈ 1.5 kSI2000

Status of PHOENIX @CSCS (06) [ref]

- 5 Service nodes running services:
 - Compute Element (CE)
 - → Storage Element (SE/DPM: 8TB RAID5)
 - User interface
 - → LFC, MON, GANGLIA
- 15 Worker Nodes (30 CPUs)
- 3 VO-boxes: CMS, Atlas, ARC(Nordugrid)
- 1 management node + test nodes

Node Architecture:

Intel dual-Xeon 3.0 GHz, 4 GB RAM Intel Pentium4 3.0 GHz, 1 GB RAM

45 kSI2000

(1 Xeon 3.0 GHz ≈ 1500 kSI2000) 2 x 1 Gbps network access

ATLAS Tier-3 Federation [ref]

- Swiss ATLAS Cluster Resources (see also A.Straessner)
 - → compute elements (CE): typical number of worker cores
 - → Storage elements (SE) disk space in TB
 - → Shared resources: ATLAS shares, with full resource sizes in parentheses.
 - → The Bern Tier-3 Shared is the central university facility.

	CSCS T2 shared	Ge T3	Be T3	Be T3 Shared	SUM
CE Cores 2006	10 (of 30)	24	36	100 (of 288)	170
CE Cores 2007	50 (of 140)	108	32	100 (of 506)	290
CE Cores 2008	170 (of 500)	188	59	100 (OF 506)	508
SE [TB] 2006	2 (of 10)	7	10	0	19
SE [TB] 2007	14 (OF 40)	25	10	0	49
SE [TB] 2008	90 (OF 280)	75	25	0	190

CHIPP Plenary Meeting

Oct. 2, 2006