A precise measurement of the muon lifetime τ_{μ}

Line FAST experiment

Chiara Casella DPNC (Université de Genève)

on behalf of the **FAST Collaboration**

A.Barczyk⁽¹⁾, J. Berdugo⁽²⁾, J. Casaus⁽²⁾, C. Casella⁽³⁾, K. Deiters⁽⁴⁾, J. Kirkby⁽¹⁾, L. Malgeri⁽¹⁾, C. Mana⁽²⁾, J. Marin⁽²⁾, G. Martinez⁽²⁾, C. Petitjean⁽⁴⁾, M. Pohl⁽³⁾, E. Sanchez⁽²⁾, C. Willmott⁽²⁾

CIEMAT²

Giemat

UNIGE ³

MERSITÉ DE CEMÉ

Chiara Casella

CERN¹

CHIPP Plenary Meeting, 15 October 2007 - PSI

OUTLINE

- Goal of the experiment & Theoretical motivations
- The FAST experiment
 - general experimental concept
 - description of the setup elements

(beam; target; readout; DAQ; LV2 trigger)

- First Muon Lifetime Measurement
 - run 2006 data sample
 - analysis procedure (from raw data to histograms)
 - fit procedure (i.e. muon lifetime measurement)
 - study of the systematic uncertainty
- Conclusions & Future plans

GOAL OF THE EXPERIMENT & MOTIVATIONS FAST goal : precision measurement of the muon lifetime $\delta \tau_{u}/\tau_{u} \sim 2 \text{ ppm} [\sim 4\text{ps}]$ Past muon lifetime measurements [PDG 06] **ULTIMATE FAST GOAL** 50 One order of magnitude 150 World Average Value : (2197.03 +/- 0.04) ns improvement on the current Ducios (1973) Deviation from world average [ppm] world average 100 1974 1984 2 ppm ppm 50 alandin (1974 0 3ardin (1984) ∞ **PRESENT ANALYSIS** O (2006 data sample): tti (1984 world average competetitive -50 1973 1984 muon lifetime measurement - as single experiment --100 -50 Time m^5 $\frac{\delta G_F}{G_F} = 1 \ ppm$ $\frac{\delta \tau_{\mu}}{2} = 2 \ ppm \Rightarrow \frac{\sigma}{r}$ FAST: high $(1 + \Delta q)$ 192π au_{μ} energy 9 ppm experiment δG_F $1 \delta \tau_{\mu}$ At present, the (exp) $5 \, \delta m_{\mu}$ performed accuracy on τ_{u} is the $\overline{G_F}$ at low limiting factor for an energy improved precision on = 0.3 ppm0.2 ppm < 13 ppm scale the Fermi Constant G_E Ritbergen & Stuart,

Phys.Rev.Lett. 82, 488 1999

2

νe

THE FAST EXPERIMENT

CHIPP Plenary Meeting, 15 October 2007 - PSI

MUON SOURCE (i.e. DC π^+ BEAM)

Chiara Casella

TARGET

- <u>Active target</u> :
 - stopping material for π^+/μ^+
 - detector for the particles
- Solid plastic scintillator (Bicron BC400)

Chiara Casella

CHIPP Plenary Meeting, 15 October 2007 - PSI

FAST READOUT & DAQ CHAIN

DAQ ARCHITECTURE

Chiara Casella

CHIPP Plenary Meeting, 15 October 2007 - PSI

RUN 2006

&

MUON LIFETIME ANALYSIS

RUN 2006: DATA SAMPLE

MUON LIFETIME HISTOGRAM

9

STEPS FOR THE FIT: 1. understand the background (t<0)

2. Extraction of the exact RF period from the fit of the negative background: - T_RF = (18.960051 +/- 0.00003) ticks \rightarrow 0.2 ppm

Chiara Casella

CHIPP Plenary Meeting, 15 October 2007 - PSI

STEPS FOR THE FIT: 2. periodic structures in the data (t>0)

STEPS FOR THE FIT: 3. rebin the histogram

Rebin the histogram using the measured beam period T_{RF}

- to minimize the influence of the periodic background on τ_{μ} measurement
- information loss but only on the details of the background, not the lifetime

STEPS FOR THE FIT: 4. boundary effects in the lifetime distr.

Due to overlapping events in the TDC window [t_min,t_max]

$$(\pi 1, \mu 1, e1)$$

$$(\pi 1, \mu 1, X)$$

$$(\pi 2, \mu 2, e2)$$

$$X = \text{beam pcl} \rightarrow \text{beam induced bkg}$$

$$X = \pi 2 \rightarrow (\pi 1, \mu 1, \pi 2) \rightarrow \text{peaked at } t_{max}$$

$$X = e2 \rightarrow (\pi 1, \mu 1, e2) \rightarrow \text{peaked at } t_{min}$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e1)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 1, \mu 1, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, \mu 2, e2) (\pi 2, e2) (\pi 2, e2) (\pi 2, e2)$$

$$(\pi 2, e2) (\pi 2, e2)$$

THE FIT

14

SYSTEMATICS STUDY

- Evaluated with several dedicated histograms (produced online)
- Different classes of systematic errors studied, with different sets of specific lifetime histograms
- General recipe: Any deviation inconsistent with the statistical fluctuations is considered to be of systematic origin A PRIORI consistency criteria = 3 sigma's
 - 1. Fit histograms corresponding to the sub-samples & compute the average
 - 2. Look if there are statistically incompatible points (i.e. deviation from the average $\Delta \tau_{\mu} > 3\sigma$)
 - 3. How much the average changes when those points are excluded
 - 4. Quote this variation as (signed) systematic shift

SUMMARY TABLE OF SYS	TEMATIC	S	
Source of systematic	$\Delta \tau_{\mu}$ [ticks]	$\Delta \tau_{\mu}[\text{ppm}]$	
★ Homogeneity of the Target	+0.016	+7.6	
Fit Method	-0.011	-5.2	
Lifetime Estimator (i.e. $t_e - t_\mu$ vs $t_e - t_\pi$)	+0.004	+1.8	
μSR and Isotropy of the Target	-	< 1	
* Time Stability (i.e. clock)	-	< 1	
*Beam Rate	-	< 1	
TDC performance (i.e. time smearing)	-	< 1	
TOTAL	± 0.0137	± 6.5	
Examples described here			

→ At present, the determination of the systematic uncertainty is limited by the statistics

→ There is no evidence of large systematic effects

SYSTEMATICS: HOMOGENEITY OF THE TARGET

2 examples for no evidence of a systematic effect beyond the expected statistical fluctuations

SYSTEMATICS: HOMOGENEITY OF THE TARGET

Lifetime VS position of the tube in the target:

SYSTEMATICS -- GEOMETRY :

- lifetime vs pion position (x,y) \checkmark
- lifetime vs position inside the PSPM \checkmark
- lifetime vs detection efficiency \checkmark
- lifetime vs position of PSMP in the target X
- lifetime vs position of TDC chip in the target \checkmark
- lifetime vs position of TDC in the target \checkmark

Systematics associated to the target (dis)homogeneity

 $\Delta \tau_{\mu} = +0.016$ ticks = +7.6 ppm

Chiara Casella

SYSTEMATICS : TIME STABILITY & RATE DEPENDENCE

TIME STABILITY

Data set divided in 89 subsets of similar size (~ 1.2 10⁸ evts) similar duration (~ 4 hours)

Nominal fit applied to every subset:

GOOD TIME STABILITY WITHIN STATISTICAL UNCERTAINTY of **15 ppm**

RATE DEPENDENCE

Chiara Casella

CHIPP Plenary Meeting, 15 October 2007 - PSI

4.04 / 8

RESULTS & CONCLUSIONS

first FAST precise measurement of the positive muon lifetime and Fermi Constant GF :

→Run 2006, 3 weeks data taking / 1.073 $10^{10} \mu^+$ decay events / precision compatible with PDG →Good agreement with the PDG / The uncertainty is totally dominated by the statistics

Chiara Casella

FUTURE PLANS FOR FAST

• RUN 2006 largely proved the reliability and feasibility of the measurement, but a few more steps are needed to achieve the final FAST goal

increase the working rate : 30 kHz (LV2) → 100 – 120 kHz (LV2)

- 1. <u>Solve some malfunctioning in the TDCs</u> (considering CAEN V767→V1190A replacement)
- 2. <u>Double the DAQ hardware</u> (number PVIC nodes) (max bandwidth: 80 MB/s → 160 MB/s)
- 3. <u>New mode of reading the TDCs</u> (continuous mode VS trigger matching mode)

• analysis:

- 1. Higher statistics: new/different systematics
- 2. Extended LV1 tagging (all pcls) i.e. pulsed structure is expected to be reduced
- 2007 beam time (from now to Dec) :

final upgrade of the DAQ performance

• 2008 beam time :

data collection (at max rate) for the final measurement

