

Status of EXO experiment

F. Juget Université de Neuchâtel

The EXO experiment

The Enriched Xenon Observatory aims to detect "neutrinoless double-beta decay" using a TPC with large amounts (1-10 t) of xenon isotropically enriched (80%) in ¹³⁶Xe

 $\beta\beta0\nu$ process: ¹³⁶Xe \rightarrow ¹³⁶Ba⁺⁺ + 2e⁻

Goals:

- Measure effective Majorana neutrino masses with a sensitivity close to 0.01 eV
- Probe the Majorana nature of neutrinos
- In addition of the electrons energy measurement, a background reduction using optical spectrometry to tag the barium final state

Barium tagging

- Final state ¹³⁶Ba tagging with optical spectroscopy
 - Ba⁺ system well studied (Neuhauser, Hohenstatt, Toshek, Dehmelt 1980)
 - Very specific signature

- Important additional constraint
- Drastic background reduction

Energy levels of Ba+.

Ba⁺ Tagging Schematic for EXO

The Plan

EXO-200

- Exo-200 will not make use of laser tagging but it will:
 - Test all technical aspects of EXO
 - Operate underground at WIPP lab (1700 m.w.e) for 2 years
 - Measure for the first time $\beta\beta2\nu$ process in ^{136}Xe
 - Have a sensitivity sufficient to explore $\beta\beta0\nu$ range in |<m_v>| suggested by the Heidelberg-Moscow experiment
 - 1) 200kg of Xe enriched to 80% in 136
 - 2) $\sigma(E)/E = 1.6\%$ obtained in EXO R&D (Conti et al., Phys Rev B 68 (2003) 054201)
 - 3) Low but finite radioactive background: 20 events/year in the $\pm 2\sigma$ interval centered around the 2457.9(0.4) keV endpoint ^a
 - 4) Negligible background from $2\nu\beta\beta$ (T_{1/2}>1·10²²yr) ^b

Case	Mass	Eff.	Run	σ _E /E @	Radioactive	T _{1/2} ^{0νββ}	Majorana mass	
	(ton)	(%)	Time	2.5MeV	Background	(yr, 90%CL)	(eV)	
			(yr)	(%)	(events)		QRPA	NSM
EXO-200	0.2	70	2	1.6	40	6.4×10 ²⁵	0.27†	0.38*

[†] Rodin et al Phys Rev C 68 (2003) 044302

* Courier et al. Nucl Phys A 654 (1999) 973c

^a M. Redshaw, J., McDaniel, E. Wingfield and E.G. Myers (Florida State Precision Penning Trap), to be submitted to Phys. Rev C.

^b R. Bernabei et al., Phys. Lett. B 546, 23 (2002)

EXO-200: a 200kg LXe TPC with scintillation readout in a ultra-low background cryostat/shielding

The Cryostat

Xenon handling and cooling system commissioned in April '07, liquefying 30kg of LXe

The EXO-200 moving

Ba⁺ Tagging

release from a metallic tip is challenging:

3 techniques under study in parallel:

EXO-FULL Sensitivity

Assumptions:

- 1) 80% enrichment in ^{136}Xe
- 2) Intrinsic low background + Ba tagging eliminate all radioactive background
- 3) Energy resolution only used to separate the 0v from 2v modes:

Select 0v events in a $\pm 2\sigma$ interval centered around the 2.458 MeV endpoint

4) Use for $2\nu\beta\beta T_{1/2} \rightarrow 1.10^{22}$ yr _b

Case	Mass (ton)	Eff. (%)	Run Time	σ _E /E 2.5MeV	2vββ Background	T _{1/2} ^{0v} (y,	Majorana mass (meV)	
			(y)	(%)	(events)	90%CL)	QRPA [‡]	NSM#
Conservative	1	70	5	1.6*	0.5 (use 1)	2*10 ²⁷	50	68
Aggressive	10	70	10	1†	0.7 (use 1)	4.1*10 ²⁸	11	15

* $\sigma(E)/E = 1.4\%$ obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201

⁺ σ (E)/E = 1.0% considered as an aggressive but realistic guess with large light collection area

[‡] Rodin et al Phys Rev C 68 (2003) 044302

Courier et al. Nucl Phys A 654 (1999) 973c

b R. Bernabei et al., Phys. Lett. B 546, 23 (2002)

Summary

• EXO-200

- Xenon handling and cryogenic systems built and commissioned
- The electronics boards are in production
- About 1/3 of the APDs have been tested
- The cleanrooms are all at WIPP
- The TPC is under construction
- First data in 2008 during 2 years

Ba tagging

- Ion trapping in buffer gas well understood
- Possible ion transfer methods being developed
- Apparatus for testing ion transfer from liquid being developed

Improving the Energy Resolution

Two detector options under consideration

High Pressure gas TPC 5-10 atm, 50 m³ modules, 10 modules for 10 t Xe enclosed in a non-structural bag β range ~5-10cm: can resolve 2 blobs 2.5m e-drift at ~250kV Readout Xe scintillation with WLSB (T0) Additive gas: quenching and Ba⁺⁺ → Ba⁺ neutralization Steer lasers or drift Ba-ion to detection region

Liquid Xe chamber

 Very small detector (3m² for 10tons)
 Need good E resolution
 Position info but blobs not resolved
 Readout Xe scintillation
 Can extract Ba from hi-density Xe
 Spectroscopy at low pressure: ¹³⁶Ba (7.8% nat'l) different signature from natural Ba (71.7% ¹³⁶Ba)
 No quencher needed, neutralization done outside the Xe

Cryostat concept is frozen (Neuchâtel+Yverdon)

•No lead attached to cryostat

•FEA: Outer vessel can be evacuated (for thermal insulation)

•FEA: Inner vessel can stand 2 bar internal pressure (HFE vapor pressure), with vacuum outside

- •IV wrapped with superinsulation, maintained by a net
- •Xenon chamber attached to door of IV (or extra supports?)
- •All feed-throughs to xenon chamber through IV door

Xenon Handling System

Single Ba ion trapping

RF quadrupole potential in each segment

Multiply by 16, and add a buffer gas to cool down the ions injected at one end of the trap into a DC minimum

 $v = \mu x lkV/cm \sim 0.3 cm/s$

K. Wamba et al., NIM A 555 (2005) 205