Status of the ATLAS Experiment

Outline

- A lot of new, exciting results since the last LHCC in June
- Status of data-taking and reconstruction
- Focus on the latest Physics results:
 - → Heavy Ions
 - → B-physics
 - → Standard Model
 - → Top
 - → Exotics
 - → SUSY
 - → Higgs
- For more: http://atlasresults.web.cern.ch/atlasresults/

Data-Taking in 2012

- 15 fb⁻¹ delivered luminosity
- 14 fb⁻¹ recorded by ATLAS
- Data-quality efficiency ~ 94%
 - → Stable over entire period April-Sep
- Total efficiency (delivered → physics) ~ 88%

ATLAS p-p run: April-June 2012												
Inner Tracker			Calorimeters		Muon Spectrometer				Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid		
100	99.6	100	96.2	99.1	100	99.6	100	100	99.4	100		

All good for physics: 93.6%

Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at Vs=8 TeV between April 4th and June 18th (in %) – corresponding to 6.3 fb⁻¹ of recorded data. The inefficiencies in the LAr calorimeter will partially be recovered in the future.

Trigger in 2012

(Main) streams sizes up to 3rd technical stop:

Stream	Egamma	Muons	JetTauEtmiss	Total prompt	Hadron delayed	Bphysics delayed	Total Delayed
Events (10 ⁹)	0.47	0.48	0.54	1.62	0.22	0.23	0.47
Average Rate [Hz]	110	110	120	370	50	50	110

Tier⁰ Reconstruction

- Tier0 reconstruction coping well with luminosity / pile-up
- Tier0 capacity 6k slots. Increased to 7.5k for reprocessing of initial data during TS1 and during the ICHEP 'rush'.

Grid Computing

Efficiently using all the resources provided by the Grid sites

1500 distinct ATLAS users

Massive 8 TeV MC120,000 production

Maximum: 167,404 , Minimum: 53,154 , Average: 134,401 , Current: 152,495

Pile-up

- Marginally more pile-up over the summer
- Efforts continue to understand and reduce the effect of pile-up

Pile-up and electron/photon ID Calorimeter Isolation

- Now using 3D topological clusters when measuring isolation
- Sensitivity to out-of-time pile-up significantly reduced!

solation energy [GeV]

Heavy Ions: p-Pb at √s_{NN} = 5 TeV

- First look at p-Pb data taken on September 12
- About 3M events recorded with Minimum Bias trigger
- MBTS still functioning despite radiation damage

Heavy Ions: Pb-Pb at √s_{NN} = 2.76 TeV Jet Fragmentation

Heavy Ions: Pb-Pb at √s_{NN} = 2.76 TeV Photon-Jet Correlation

Significant deviation from p-p in very central events

Heavy Ions: Pb-Pb at √s_{NN} = 2.76 TeV Z-Jet Correlation

- Observation of 1995 Z events
- Indication of the same jet-quenching effect as in photon-jet (although with large uncertainties)

Unfolded distr of p_T(jet)/p_T(Z):

ATLAS Preliminary
Data 2011 Pb+Pb

B-Physics: Mixing and CP-violation in Bs → J/Ψ Ф

 Untagged analysis: decay time distribution and angular correlation between muons and kaons provide information on CP=±1 amplitudes and their interference.

Large sample: 23k reconstructed B_S in 2011 data

B-Physics: Mixing and CP-violation in Bs → J/Ψ Ф

- CP violating phase is confirmed to be small:
 \$\phi = 0.22 \pm 0.41 \pm 0.10 \text{ rad.}\$
- Average B_S lifetime and width difference $\Delta\Gamma_S$ are measured with high accuracy arXiv:1208.0572

Standard Model:

WZ Cross-Section and Triple Gauge Coupling

- Isolate 317 candidate events WZ → IvII (I = e or µ)
- Inclusive cross-section:

$$\sigma_{WZ}^{\rm tot} = 19.0^{+1.4}_{-1.3} \text{(stat.)} \pm 0.9 \text{(syst.)} \pm 0.4 \text{(lumi.)} \, \text{pb}$$

- **SM** expectation: $17.6^{+1.1}_{-1.0}$ pb
- Set limits on anomalous TGC

TGC

Standard Model: ZZ Cross-Section at 8 TeV

- $ZZ \rightarrow 4$ leptons, using 5.8 fb⁻¹ of 8 TeV data:
- Total c-s = $9.3^{+1.1}_{-1.0}$ (stat.) $^{+0.4}_{-0.3}$ (syst.) ± 0.3 (lumi.) pb
- Consistent with SM prediction: 7.4 ± 0.4 pb

Standard Model: Dijet Cross-Section, 2.76 TeV / 7 TeV

- Measurement of the double differential (p_T, rapidity) inclusive jet cross section using the 2.76 TeV data
- Ratio of cross-sections at 2.76 TeV and 7 TeV
 - → Impact on pdf's

Top Physics b-Tagging Calibration with t-tbar Events

Bgd-subtracted

b-tag weight

3 techniques:

- Tag-counting: fit ε_b to the number of events with 0, 1, and 2 b-tags
- → Kinematic fit
- → Kinematic selection

$$\mathbf{e}_{b} = \frac{1}{f_{b}} (f_{tag} - \mathbf{e}_{c} \cdot f_{c} - \mathbf{e}_{l} \cdot f_{l} - \mathbf{e}_{fake} \cdot f_{fake})$$

- All consistent with muonbased techniques
- Significant reduction of systematic uncertainty on ε_b at high jet p_T

10⁻³

ATLAS Preliminary

L dt = $4.7 \text{fb}^{-1} \sqrt{s} = 7 \text{ TeV}$

10 ⊨ MV1 25-200 GeV

→ data

expected truth

Top Physics t-tbar Differential Cross-Section

- Differential ttbar cross-sections relative to the inclusive cross-section measured in the lepton+jets channel.
- Data unfolded for detector effects and corrected acceptance

Consider mass, p_↑ and y of the t-tbar system arXiv:1207.5644

Top Physics t-tbar + Jet Cross-Section

- Lepton+Jets channel, multivariate technique used to reject W+jets background
- Jet definition at reco-level:
 - → $p_T > 25$ GeV and $|\mu| < 2.5$ (anti-kt, R=0.4)
 - → Compare 4-jet and ≥5-jet yields
- Define extra-jet at particle level as any jet not matched to partons (q,g,γ) from top

$$\sigma_{ttj}^{-} = 102 \pm 2(\text{stat.})^{+23}_{-26}(\text{syst.}) \text{ pb}$$

$$\sigma_{ttj}^{-}/\sigma_{tt}^{\text{incl}} = 0.54 \pm 0.01(\text{stat.})^{+0.05}_{-0.08}(\text{syst.})$$

Dominant systematics t-tbar modelling and JES) cancel in the ratio

ATLAS-CONF-2012-083

Single-Top t-channel Cross Section at 8 TeV

- Using events with 2/3 jets, exactly 1 b-tag.
- Multivariate analysis with maximum likelihood fit on full neural network output

 $u(\overline{d})$

 $d(\overline{u})$

$$|V_{tb}| \gg |V_{ts}|, |V_{td}| \rightarrow |V_{tb}| = 1.04_{-0.11}^{+0.16}$$

 $|V_{tb}| \le 1 \rightarrow |V_{tb}| > 0.80 @ 95\%CL$

ATLAS-CONF-2012-132

Top Properties

Top Mass:

- First ATLAS measurement in the dilepton channel
 - → eµ channel with 2-btags
 - → Calibration curve of <m_{T2}> vs input top quark mass

 $m_{\text{top}} = 175.2 \pm 1.6(\text{stat.})^{+3.1}_{-2.8}(\text{syst.}) \text{ GeV}$

ATLAS-CONF-2012-082

Top polarization:

- Lepton+jets channel
- Template fit to $cos(θ_l)$
- θ_l = lepton polar angle in top rest frame
- f = fraction of positively polarised top quarks

$$f = 0.470 \pm 0.009(\text{stat})^{+0.023}_{-0.032}(\text{syst})$$

Compatible with $f_{SM} = 0.5$

ATLAS-CONF-2012-133

Exotics t-tbar Heavy Resonance

- Lepton+jets channel
- Taking full advantage of boosted techniques
- Combining resolved and boosted reconstructions

ATLAS-CONF-2012-136

 $g_{_{KK}}$ mass [TeV]

Reconstruction of Boosted Objects

 Reconstruct boosted objects (top or W/Z/H) with a "fat" jet (R ~1)

"grooming"

Exotics Search for Heavy Quarks

- Up-type heavy quark: t't' → WbWb
- Lepton + jets channel
- Reconstructing boosted hadronic W decaysm(t') > 656 GeV at 95% CL (exp. 638 GeV)

- Also new result on down-type quark:
- b'b' → WtWt, same-sign dilepton channel

m(b') > 670 GeV at 95% CL (expected: 640 GeV)

ATLAS-CONF-2012-130

 Vector-Like Quark interpretation: setting limits on branching ratios to Wb, tH, tZ

Exotics

Dilepton and Dijet Resonances at 8 TeV

 $m(q^*) > 3.66 \text{ TeV at } 95\% \text{ CL}$

m(SSM Z') > 2.49 TeV at 95% CL

- 7 TeV → 8 TeV brings significant gain in sensitivity, even with ~ same luminosity. Expected limits improved by:
 - +300 GeV for Z' → dilepton
 - +700 GeV for q* → dijet

Exotics: A Summary

- Effort on 7 TeV data coming to a conclusion:
 - → 33 papers on 2011 data. Finishing with the most complex final states.

8 TeV programme well advanced

Supersymmetry

- "Standard" SUSY (mSUGRA) limits are beyond 1 TeV
- Now focusing on more general models
- Minimal requirements for a Weak Scale SUSY:

SUSY: 1st and 2nd generation squarks / gluinos

- "Standard" SUSY search: 0-lepton + jets + Missing ET
- Gluino production decaying only to top and neutralino. Final state: gluino gluino → 4-top + 2 LSP's
- Sensitive to 1rd-2nd squarks, gluinos masses beyond 1 TeV

SUSY Exclusive Searches: Direct Stop Production

- Looking for stop pair production
- 5 different dedicated analyses
 with 0, 1, 2 leptons, w/ or w/o b-jets
- Sensitive up to 500 GeV

If m(stop) > m(top) + m(LSP), signature is t-tbar + MET

SUSY Exclusive Searches: Direct Shottom Production

- Looking for sbottom pair production:
- Sbottom → t + chargino
- Signature: multilepton

- Sbottom → b + LSP
- Signature: 2b's + MET

SUSY Exclusive Searches: Direct Gaugino Production

Looking for gaugino pair production:

Sensitive to m (gauginos) ~ 200-300 GeV

Supersymmetry: Summary

ATLAS seriously bites into Weak Scale SUSY

2011 (4.7 fb⁻¹): 12 papers, 3 CONF notes **2012** (5.8fb⁻¹): 4 CONF notes

Higgs: <u>H → WW → evµv with 8 TeV data</u>

Since July 4th, publication of observation paper including

8 TeV WW → evµv channel

2.8 sigma excess in this channel alone (7+8 TeV data)

Phys. Lett. B 716 (2012) 1-29

160 180

 $m_{\rm T}$ [GeV]

Higgs Combination: Update since 4th July CERN Council

Higgs Couplings

- Using the Higgs LHC crosssection working group formalism: hep-ph: 1209.0040
- Projected sensitivity
 for 300 and 3000 fb⁻¹
 studied in the context of ESPP:
 ATL-PHYS-PUB-2012-001

Higgs Couplings

 \sim In $\Lambda(\lambda_{
m wz})$

2 In A(BR_{inv.})

Test of custodial symmetry:

$$\lambda_{WZ} = k_W/k_Z$$
 (= 1 in SM)

$$\lambda_{WZ} = 1.07^{+0.35}_{-0.27}$$

Probe potential non-SM contribution to gg → H and H→ γγ loops, assuming a possible invisible Higgs branching ratio

Conclusion

- Many thanks to the LHC team for the superb performance of the LHC!
- ATLAS detector continues to operate well
 - → High data-taking efficiency and data-quality
 - → Successful high-luminosity operation (trigger, pile-up under control)
- A wealth of data being analyzed in all directions
 - → Heavy ions
 - → Precision measurements using all center-of-mass energy datasets
 - → BSM searches on 7 TeV data completed, on 8 TeV well underway
- Quickly entering the era of Higgs measurements
 - → More data (~ 25 fb⁻¹ at 8 TeV) would be extremely useful!
- Very good progress also on upgrade activities and physics studies for HL-LHC (input submitted to the European Strategy Symposium in Cracow)

Backup

ATLAS Publications

http://atlasresults.web.cern.ch/atlasresults/

Fast Reprocessing

- Planning a reprocessing of the 2012 data with improved conditions (Inner detector and muon spectrometer alignments etc...).
- This reprocessing will happen at the Tier-1's and will be used for results shown at Moriond 2013.
- Data taken so far to be reprocessed is ~1.5B events.

ttbar-based b-tagging calibration

ATLAS-CONF-2012-097

b-tag eff measured in tt events with three complementary methods:

Kinematic selection (lepton+jets and dilepton):

Tight kinematic selection to get high signal purity.

One b-tagged jet at preselection stage (lepton+jets).

$$\varepsilon_b = \frac{1}{f_b} (f_{tag} - \varepsilon_c \cdot f_c - \varepsilon_l \cdot f_l - \varepsilon_{fake} \cdot f_{fake})$$
• Tag counting (lepton+jets and dilepton):

 $\varepsilon_{\rm b}$ from fit to the number of b-tagged jets per event.

Flavor fractions largely from simulated events.

Kinematic fit (lepton+jets):

 χ^2 -fit to map jets to top- and *W*-decays.

Use b-jet on hadronic side to measure ε_{h}

Data-driven background subtraction.

- Results consistent with µ-based methods.
- Significantly reduces uncertainties on data-to-MC SFs at high jet pT.

ATLAS SUSY Search strategy Inclusive searches

Phenomelogy

- 1. Strong production (low, high $\Delta M/M_{susy}$)
- 2. Natural spectrum
- 3. Low Δm , tiny RPV, weak coupling to G
- 4. 'Sizeable' RPV
- 5. MSSM Extensions?

• Signature

Inclusive jets+MET

Dedicated searches with bjets, multileptons, jet/Z veto

Long Lived or meta-stable sparticles

Multileptons (inc. tau), No Z, jet resonances, LFV

Scalar Gluon

→ Phenomenology oriented searches

Inclusive searches

- Status and outlooks on SUSY energy frontier search
 - Exclude up to 1.4 TeV @ √s=7 TeV (m_q=m_q)
 and m_q>800 GeV
 - At the energy frontier \sqrt{s} =8 TeV can gain ~ 2.5-5 in parton luminosity wrt 7 TeV
 - → Expect a sensitivity increase of few hundreds GeV

→ Worth to look at √s=8 TeV with L(7 TeV) ~ L(8 TeV)!

Long-Lived Particles Direct sleptons

Direct Slepton production (first LHC limit)

Direct long-lived Slepton production

Disappearing track (sensitivity beyond LEP2)

Search for the SM-Higgs boson in the

Channel $t\bar{t}(H \to b\bar{b})$

With 7 TeV (4.7 fb-1) 2011 data only

 \rightarrow Semi leptonic topologies with four or more jets (pTjet>25 GeV and |η| < 2.5) further separated in 9 topologies with 4.5 and 6 or more jets and number of b-

→ Result :

- Dominant background (tt+jets)
- Uncertainty on tt+HF prediction

50%

- Result:

O(10) x SM expected cross

section

ATLAS-CONF-2012-135

Physics at High Luminosity

Expected precision on Higgs BR and partial width with 300 and 3000 fb-1

 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1} \sqrt{s}$ = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

ATLAS Preliminary (Simulation)

ATL-PHYS-PUB-2012-001

 $\frac{\Delta(\sigma \bullet BR)}{\sigma \bullet BR}$

LHCC, 26/10/2012

H. Bachacou, CEA-Saclay/CERN

 $\Delta(\Gamma_{\mathsf{X}}/\Gamma_{\mathsf{Y}})$

 $\Gamma_{\mathsf{X}}/\Gamma_{\mathsf{Y}}$

Fast Reprocessing

- Planning a reprocessing of the 2012 data with improved conditions (Inner detector and muon spectrometer alignments etc...).
- This reprocessing will happen at the Tier-1's and will be used for results shown at Moriond 2013.
- Data taken so far to be reprocessed is ~1.5B events.