

CMS STATUS REPORT

A. David (LIP, Lisboa) for the CMS Collaboration

Data just keeps pouring

2

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

Thanks to the LHC !

- Doubled the 8 TeV dataset.
- 50% more luminosity in total by now.
- Looking forward to the rest of the year.

CMS Total Integrated Luminosity, p-p otal Integrated Luminosity (fb ⁻¹) 2011. √s = 7 TeV 16 16 2012. √s = 8 TeV 14 14 12 12 10 10 110th 8 LHCC 6 2 02/05 02/07 01/09 Time in year

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

- New online procedures reduced inefficiencies:
 - □ from 7.7% (April-June).
 - **To** 4.9 % (July-Aug).
- Solenoid fast discharge:
 - ~0.5/fb recorded without magnetic field.
 - B=0 collision data used for alignment and calibration.

Detector channel count

 Largest change:
 Recovery of 75 ECAL endcap channels.

Fraction (%)

[CMS-DP-2012-015]

- Reaping the benefits:
 - Automated 48-hour calibration loop.
 - New solid state monitoring laser.
- \Box No surprises with >7e33.

LHC: now serving up to 7.5e33 cm⁻²s⁻¹

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

Record-breaking fill:

- L1 rate steady near 100 kHz limit.
- 5% dead-time initially but drops very quickly.

8e33 trigger menu ready.

 Requires some cutting into the physics.

Data parking in place.

300+ Hz saved for reconstruction in 2013.

Data scouting in place.

 High rate, small event content.

 Weekly updated corrections for signal response.

Much sharper turn-on in forward region.

- Tighter η roads in L1 track finders.
- □ 50% smaller muon rate.
 - With a small efficiency loss.

- Increase jet seed thresholds to 5 GeV.
- Much better high-lumi. rate behavior.
 - No physics impact.

Tighter quality criteria on isolation tracks.

10

- \Box Higher \mathcal{T} trigger efficiency.
 - Improvement for $H \rightarrow \tau \tau$ search.

Since 110th LHCC:
35 new submissions for publication
http://goo.gl/7L7vj
75 new public Physics Analysis Summaries
http://goo.gl/VSGw0

Submitted for publication

12

Physics Analysis Summaries

Highlights: B and Forward Physics

13

[BPH-11-003] [arXiv:1209.2922] [arXiv:1209.1666]

14

Highlights: Heavy-lon physics

[HIN-10-005, HIN-11-008/002, HIN-12-008/014] [HIN-12-003, 004] [arXiv:1208.2826] [arXiv:1208.2826, HIN-12-007, 014]

15

Highlights: Electroweak physics

[SMP-12-005, 007, 011, 013, 014] [SMP-12-009]

A. David (LIP, Lisboa)

Top pair production at 8 TeV

16

Single top production at 8 TeV

[TOP-12-011]

Highlights: top properties

18

[TOP-11-018] [arXiv:1207.0065] [TOP-12-019] [arXiv:1208.0957] [TOP-12-024]

$m_{\rm t} = 173.36 \pm 0.38$ (stat.) ± 0.91 (syst.) GeV

A. David (LIP, Lisboa) CMS at LHCC 111

Charge asymmetry

Highlights: SUSY at 8 TeV

19

[SUS-12-016] [SUS-12-017]

20

SUSY: CMSSM sweeping

[SUS-11-022, SUS-12-005/010, arXiv:1204.5341/1205.6615/1206.3949/1207.1798/1207.1898]

- The low-hanging fruits of light SUSY have been swept away.
- Next up: naturalness.
 - Search for stops and sbottoms in gluino decays.
 - Direct search for light stop and sbottom.
 - Chargino and neutralino production.

Stop and sbottom searches

[SUS-11-020/022/024/027, SUS-12-005/009, arXiv:1207.1798/1208.4859] [SUS-11-022/024, arXiv:1207.1798/1208.4859] [SUS-11-022/024, SUS-12-005]

Stop and sbottom in gluino decays

More dedicated searches in the works

A. David (LIP, Lisboa) CMS at LHCC 111

21

Highlights: Exotica reach with 8 TeV

23

[EXO-12-015] [EXO-12-010] [EXO-12-016] [EXO-12-009]

Exotica: Search for Dark Matter

- □ Use photon or jet ISR to tag production of DM particles.
 - Process very similar to that assumed in direct detection experiments.
 - Exceeds sensitivity of cryogenic searches for DM in spin-dependent DM couplings.
 - Adds sensitivity to light (M < 10 GeV) DM also for spin-independent couplings (where direct searches are most sensitive due to coherent scattering $\sim A^2$).

Looking up to a new boson

26

[arXiv:1207.7235]

27

□ Highest sensitivity in the channels with the best mass resolution: $H \rightarrow Z Z$, and $H \rightarrow \gamma \gamma \gamma$.

[arXiv:1207.7235]

28

Background fluctuations cannot explain the data at the 5.0 σ level.

Main drivers are the high resolution channels.

30

Inclusive Higgs m $_{\gamma \gamma}$ resolution

[HIG-11-010] [HIG-11-021] [HIG-12-001] [HIG-12-015]

Global significance > 3.2σ

Data combined using S/(S+B)

32

CMS Experiment at the LHC, CERN Data recorded: 2012-May-27 23:35:47.271030 GMT Run/Event: 195099 / 137440354

[HIG-12-016]

Significance slightly short of expectation

Mass distribution

A. David (LIP, Lisboa) CMS at LHCC 111

33

34

The low mass resolution channels

[HIG-12-

Decay	Production	No. of	$m_{\rm H}$ range	Int. Lum. (fb^{-1})	
mode	tagging	subchannels	(GeV)	7 TeV	8 TeV
WW	untagged	4	110–600	4.9	5.1
	dijet (VBF)	1 or 2			
ττ	untagged	16	110–145	4.9	5.1
	dijet (VBF)	4			
bb	lepton, $E_{\rm T}^{\rm miss}$ (VH)	10	110–135	5.0	5.1

Combined results

[HIG-12-020]

Mass of the new resonance

36

[HIG-12-020]

Combination assuming SM relative production and decay fractions.

Model-independent mass measurement from the high-resolution channels: $m_x = 125.3 \pm 0.6 \text{ GeV}$

\rightarrow WW shape-based analysis

7

[HIG-12-038]

- Discovery result used
 - cut-based analysis of
 - same-flavor (ee / μ μ) and different-flavor (e μ) samples.
- Same-flavor DY+MET background hard to model with high PU.
- Shape-based, differentflavor is the basis for future updates.

38

ttH, $H \rightarrow bb$: the power of tagging

[HIG-12-025]

- tt(lepton+jets) and tt(dilepton)
 - Count b-tags
 - Shape analysis

[FIIG-12-020]

39

- Exploit more exclusive channels.
- Characterize the new state with 8 TeV data.
 - How does it couple to other particles ?
 - What are its spin and parity ?

Conclusions

CMS running more efficiently.

- Unfortunate infrastructure down times.
- Constant adaptation to collision environment.

Physics analysis proceeding at full speed.

- Impressive description of LHC data by Standard Model.
 A tribute to decades of theoretical work.
- Discovery of new boson is a great accomplishment for the field. Much work ahead to characterize it.
- CMS is working hard to leave no stone unturned.
 - Looking forward to surprises.

Matrix Element Likelihood Analysis

[HIG-12-016]

Uses kinematic inputs for signal to background discrimination $\{m_1, m_2, \theta_1, \theta_2, \theta^*, \Phi, \Phi_1\}$

$$\mathbf{K}_{\mathsf{D}} = \left[1 + \frac{\mathcal{P}_{\mathsf{bkg}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}{\mathcal{P}_{\mathsf{sig}}(m_1, m_2, \theta_1, \theta_2, \Phi, \theta^*, \Phi_1 | m_{4\ell})}\right]^{-1}$$

- For signal, use fully analytic parameterization
- For BG use a simulation of the process $q\overline{q} \rightarrow ZZ/Z\gamma$

Results from 2D distributions

[HIG-12-016]

- K_D discriminant versus m_{41}
- Data points shown with per-event mass uncertainties
- Six simultaneous two-dimensional maximum likelihood fits for each value of m_H, in the variables m₄₁ and K_D.

Data w.r.t. background expectation

Results from 2D distributions

[HIG-12-016]

2D fit results:

- The minimum local p -value occurs at m_H = 125.6 GeV and has a significance of 3.2 (expected 3.8).
- The best-fit signal strength for a SM Higgs boson mass hypothesis of 125.6 GeV is 0.7+0.4-0.3

Data w.r.t 126 GeV Higgs Expectation