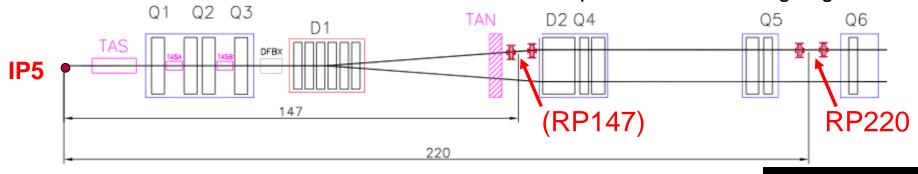
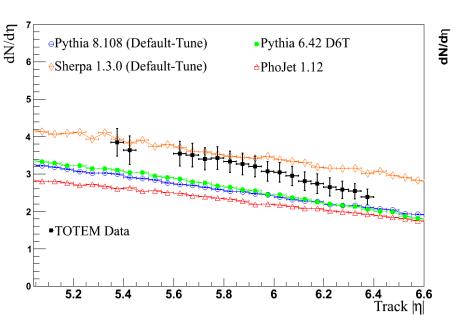

Status and Plans of the TOTEM Experiment

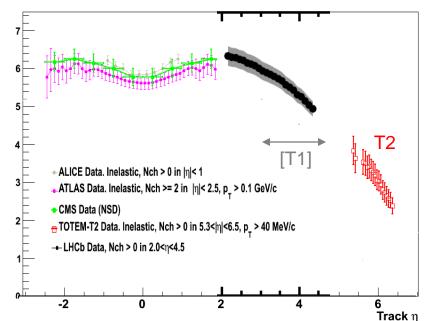

LHCC Open Session 26 September 2012

Mario Deile on behalf of the TOTEM Collaboration

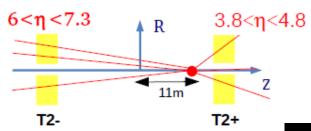
Experimental Setup @ IP5

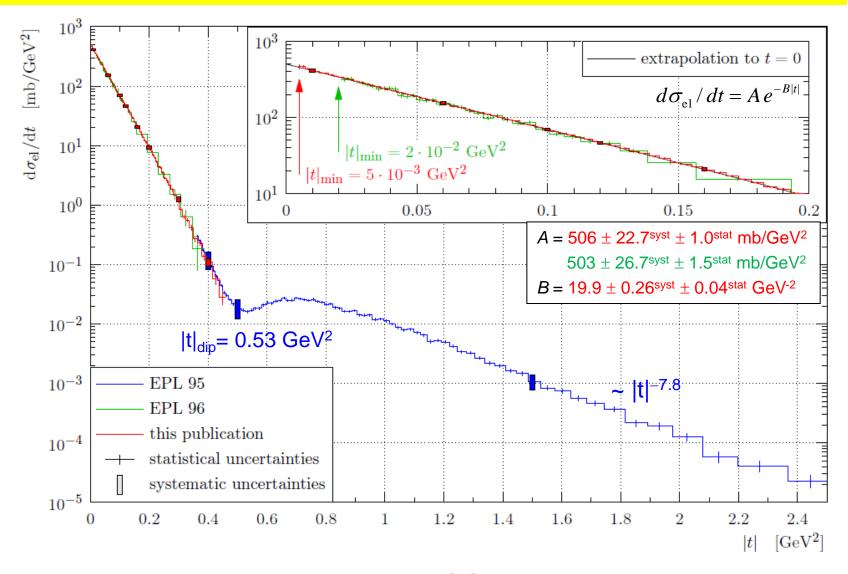
Roman Pots: measure elastic & diffractive protons close to outgoing beam




Recent and Upcoming Publications

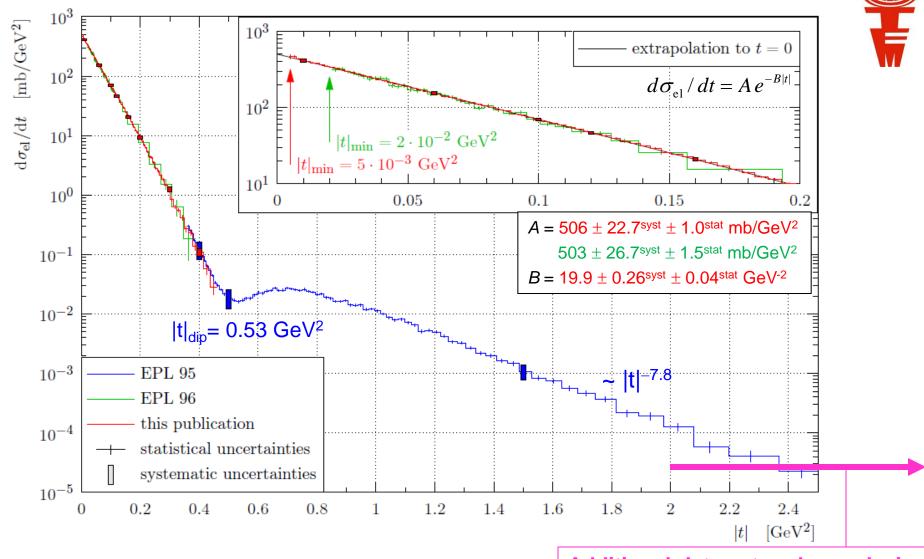
- Measurement of the forward charged particle pseudorapidity density in pp collisions at $\sqrt{s} = 7$ TeV with the TOTEM experiment [EPL 98 (2012) 31002]
- Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s} = 7$ TeV [CERN-PH-EP-2012-239, to be submitted to journal]
- Measurement of proton-proton inelastic scattering cross-section at $\sqrt{s} = 7$ TeV [final draft, to be submitted to journal]
- Luminosity independent measurements of total, elastic and inelastic cross-sections at $\sqrt{s} = 7 \text{ TeV}$ [draft in progress, to be submitted to journal]


Charged Particle Pseudorapidity Density dN / dη


Analyses in progress:

- T1 measurement at 7 TeV $(3.1 < |\eta| < 4.7)$
- NEW: combined analysis CMS + TOTEM $(0 < |\eta| < 6.5)$ on low-pileup run of 1st May 2012 (8 TeV): common trigger (T2, bunch crossings), both experiments read out
- NEW: parasitical collision at β* = 90 m (7 July 2012)
 → vertex at ~11m → shifted η acceptance:

Elastic pp Scattering at 7 TeV: Differential Cross-Section

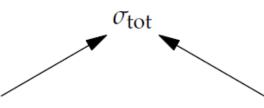


Integrated elastic cross-section:

 $25.4 \pm 1.0^{\text{lumi}} \pm 0.3^{\text{syst}} \pm 0.03^{\text{stat}}$ mb (90% measured) $24.8 \pm 1.0^{\text{lumi}} \pm 0.2^{\text{syst}} \pm 0.2^{\text{stat}}$ mb (50% measured)

Elastic pp Scattering at 7 TeV: Differential Cross-Section

Additional data set under analysis: $2 \text{ GeV}^2 < |t| < 3.5 \text{ GeV}^2$


3 Ways to the Total Cross-Section

elastic observables only:

$$\sigma_{\text{tot}}^2 = \frac{16\pi}{1 + \rho^2} \frac{1}{\mathcal{L}} \frac{dN_{\text{el}}}{dt}$$
 (p=0.14 [COMPETE])

June 2011 (EPL96):
$$\sigma_{tot} = (98.3 \pm 2.8)$$
 mb
Oct. 2011 (PH pre.): $\sigma_{tot} = (98.6 \pm 2.2)$ mb
different bunch intensities!

o independent:

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} \left(N_{\text{el}} + N_{\text{inel}} \right)$$

$$\sigma_{\text{tot}} = (99.1 \pm 4.3) \text{ mb}$$

luminosity independent:

$$\sigma_{\text{tot}} = \frac{16\pi}{1 + \varrho^2} \frac{dN_{\text{el}}/dt|_0}{N_{\text{el}} + N_{\text{inel}}}$$

$$\sigma_{\rm tot} = (98.0 \pm 2.5) \, {\rm mb}$$

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different bunch intensities,
- different methods.

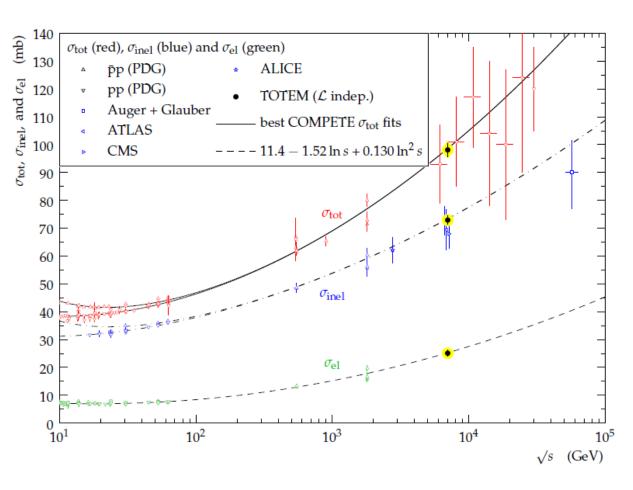
Absolute Luminosity Measurement

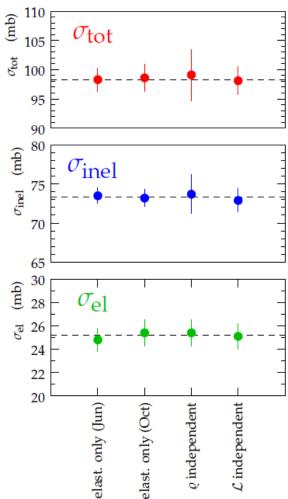
TOTEM

The "luminosity-independent method" also yields the luminosity:

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el} + N_{inel})^2}{(dN_{el}/dt)_{t=0}}$$

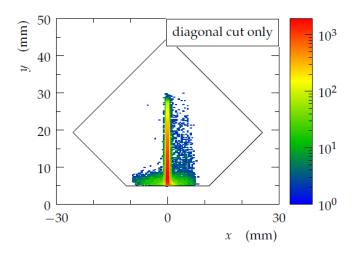
June 2011: $\mathcal{L}_{int} = (1.65 \pm 0.07) \ \mu b^{-1}$ [CMS: $(1.65 \pm 0.07) \ \mu b^{-1}$]

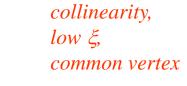

October 2011: $\mathcal{L}_{int} = (83.7 \pm 3.2) \ \mu b^{-1}$ [CMS: $(82.0 \pm 3.3) \ \mu b^{-1}$]

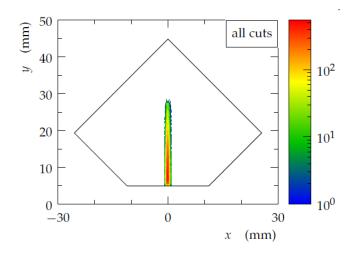

Excellent agreement with CMS luminosity measurement.

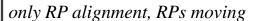
Absolute luminosity calibration for T2

Cross-Section Measurements




Elastic Scattering and Total Cross-Section at 8 TeV


dataset	date	bunches	RPs	$ t _{\min}$ (GeV ²)	\mathcal{L} (mb ⁻¹)
1	7 July, 1st fill	1	3σ	$4 \cdot 10^{-3}$	_
2	7 July, 2nd fill	1	6σ	$7 \cdot 10^{-3}$	≈ 40
3 <i>a</i>	12-13 July	1	9.5σ	$15 \cdot 10^{-3}$	≈ 30
3 <i>b</i>	12-13 July	2 or 3	9.5σ	$15 \cdot 10^{-3}$	≈ 820


cut	quantities
diagonal	4 RP hits
1	θ_{χ}^{*R} vs. θ_{χ}^{*L}
2	θ_y^{*R} vs. θ_y^{*L}
3	$ x^{*R} $
4	$ x^{*L} $
5	ϑ_y^{*R} vs. $y^{R,F} - y^{R,N}$
6	ϑ_y^{*L} vs. $y^{L,F} - y^{L,N}$
7	x^{*R} vs. x^{*L}

Elastic Scattering and Total Cross-Section at 8 TeV

dataset	date	bunches	RPs	$ t _{\min}$ (GeV ²)	\mathcal{L} (mb ⁻¹)
1	7 July, 1st fill	1	3σ	$4 \cdot 10^{-3}$	_
2	7 July, 2nd fill	1	6σ	$7 \cdot 10^{-3}$	≈ 40
3 <i>a</i>	12-13 July	1	9.5σ	$15 \cdot 10^{-3}$	≈ 30
3 <i>b</i>	12–13 July	2 or 3	9.5σ	$15 \cdot 10^{-3}$	≈ 820

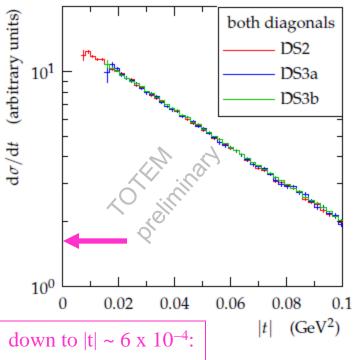
TOTEM

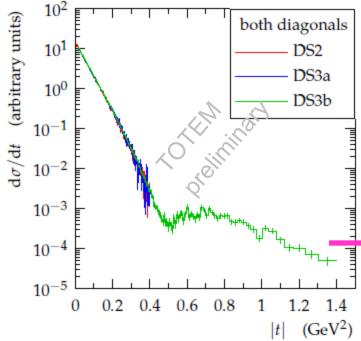
Preliminary t-distributions (unnormalised)

to be normalised via: CMS, T2, "luminosity-independent method"

→ total and inelastic pp cross-sections at 8 TeV

Coming Soon


Elastic Scattering and Total Cross-Section at 8 TeV


dataset	date	bunches	RPs	$ t _{\min}$ (GeV ²)	\mathcal{L} (mb ⁻¹)
1	7 July, 1st fill	1	3σ	$4 \cdot 10^{-3}$	_
2	7 July, 2nd fill	1	6σ	$7 \cdot 10^{-3}$	≈ 40
3 <i>a</i>	12-13 July	1	9.5σ	$15 \cdot 10^{-3}$	≈ 30
3 <i>b</i>	12–13 July	2 or 3	9.5σ	$15 \cdot 10^{-3}$	≈ 820

only RP alignment, RPs moving

Preliminary t-distributions (unnormalised)

foreseen at β * = 1km

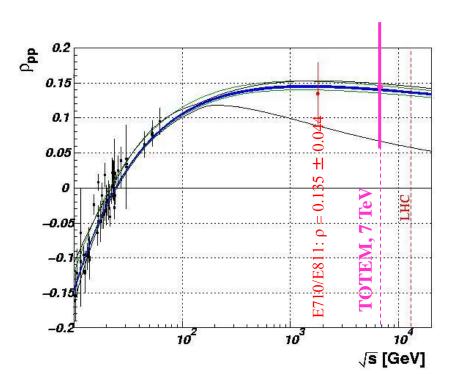
larger |t|:

- possible at β *=0.6m
- difficult due to 2xSD and other background

A First, Very Crude ρ Estimate at 7 TeV

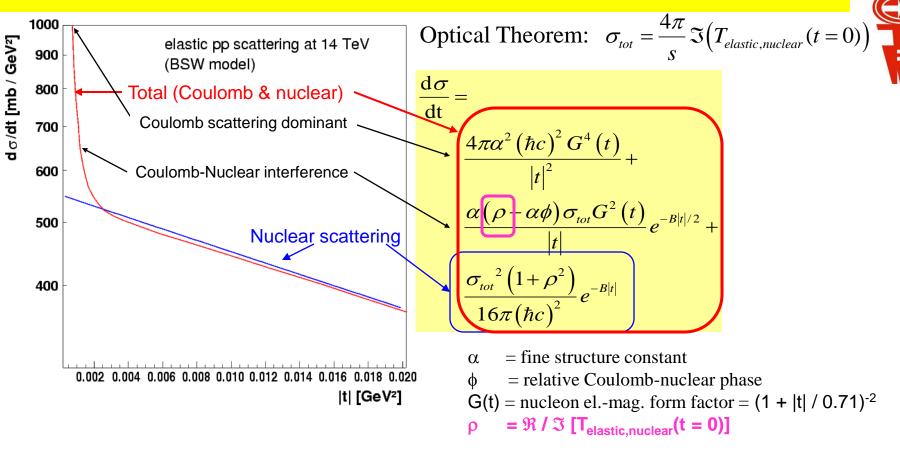
$$\rho = \frac{\operatorname{Re} T(t=0)}{\operatorname{Im} T(t=0)}$$

From optical theorem:


$$\rho^{2} = 16\pi \mathcal{L}_{int} \frac{\frac{dN_{el}}{dt}\Big|_{t=0}}{(N_{el} + N_{inel})^{2}} - 1 = 0.009 \pm 0.056$$

$$\rho < 0.32$$
 (95% CL),

or, using Bayes' approach (with uniform prior $|\rho|$ distribution):


$$|\rho| = 0.145 \pm 0.091$$
 [COMPET]

 $|\rho| = 0.145 \pm 0.091$ [COMPETE extrapolation: $\rho = 0.141 \pm 0.007$]

Not so exciting, but ...

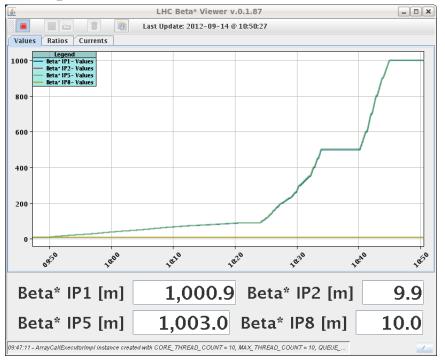
ρ Measurement: Elastic Scattering at Low |t|



Measurement of ρ by studying the Coulomb – Nuclear interference region down to $|\mathbf{t}| \sim 6 \times 10^{-4} \, \text{GeV}^2$

Reachable with $\beta^* \sim 1000$ m still in 2012 if RPs can approach beam centre to $\sim 4\sigma$

How to reach the Coulomb-Nuclear Interference Region?

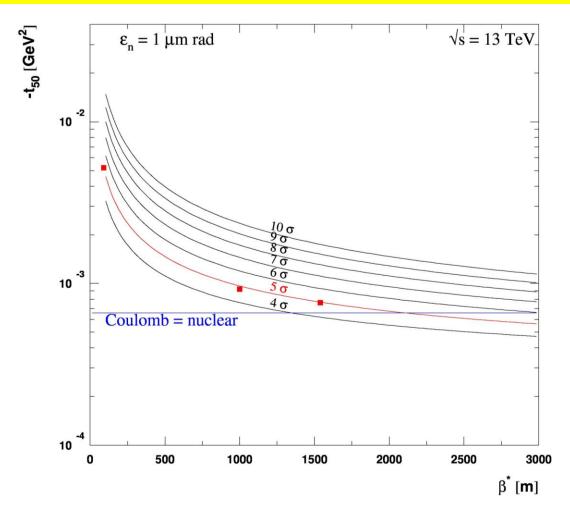

The pots have to approach the beam to a distance $\sim 4~\sigma$ Beam emittance $\epsilon_n < 2~\mu m$ rad

→ Challenging but possible

The β * = 1000 m Optics

MD in June: first unsqueeze to 1km achieved

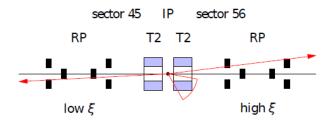
14 September:


- special beam optics with β * = 1000 m fully commissioned
- collisions in IP1 and IP5 found
- vertical emittances $\varepsilon_{\rm n} \sim 2 \ \mu {\rm m}$ rad
- 4 vertical TOTEM RPs (out of 8) aligned at \sim 4 σ
- time slot ended → no physics data taken yet,
 diagnostic data on halo background being analysed

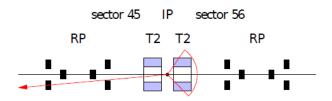
Physics run scheduled for October 2012

After LS1: Low-|t| Elastic Scattering at 13 TeV

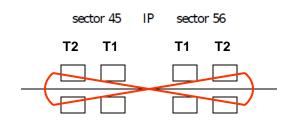
- To reach CNI region, push β^* to > 2000 m
- At 13 TeV: good t-resolution needs parallel-to-point focussing in both x and y (phase advance $\pi/2$)
- → Additional magnet cables needed. To be installed during LS1.


Diffractive Analyses Ongoing

Based on $\beta^* = 90 \text{ m} (7 \text{ TeV}) \text{ run in Oct. } 2011 (\text{RP } @ 4.8\sigma - 6.5\sigma)$:


• Central Diffraction

$$(d^2\sigma_{DPE}/\,dt_1\,dt_2,\,\,\sigma_{DPE}\,)$$


• Single Diffraction

$$(d\sigma_{SD}/dt, d\sigma_{SD}/d\xi, \sigma_{SD})$$

• Double Diffraction

Select diff. masses 3.4 GeV < M < 10 GeV requiring tracks in both T2s, veto on T1s

 \rightarrow Extend studies over full η range with CMS (2012 data)

Joint Data Taking with CMS

Realisation of common running much earlier than ever anticipated

- 1. Hardware: electrical from RP220 to CMS → trigger within CMS latency
- 2. Trigger: bi-directional level-1 exchange \rightarrow same events taken
- 3. Synchronisation: orbit number and bunch number in data streams
- 4. Offline:
 - common repository for independently reconstructed data
 - merging procedure \rightarrow common n-tuples

Joint Data Taking with CMS

May 2012: low pileup run: $\beta^* = 0.6$ m, $\sqrt{s} = 8$ TeV, T1 & T2 & CMS read out

Date	Trigger	Inelastic events	
May 1	T2 BX	~5 M	no RP

dN/dη, correlations, underlying event

July 2012: $\beta^* = 90 \text{ m}$, $\sqrt{s} = 8 \text{ TeV}$, RP & T1 & T2 & CMS read out

Date, Set	Trigger	Inelastic events	RP position
July 7, DS 2	$T2 \parallel RP_{2arms} \parallel BX$	~2 M	6σ
July 12-13, DS 3a	$T2 \parallel RP_{2arms} \parallel BX$	~10 M	9.5 σ V, 11σ H
July 12-13, DS 3b	T2 RP _{2arms} CMS (CMS = 2 jets @ $p^T > 20$ GeV, 2 μ , 2 central e/γ)	~3.5 M	9.5 σ V, 11σ H

 $\sigma_{\text{tot}},\,\sigma_{\text{inel}}$ with CMS, soft & semi-hard diffraction, correlations

Abundant material for analysis activities throughout LS1

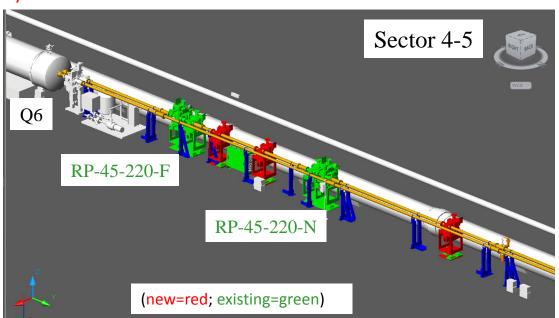
Analyses starting:

- hard diffraction: p + dijets (90m runs)
- combined dN_{ch} / $d\eta$ and multiplicity correlations

Runs Planned for 2012 / 2013

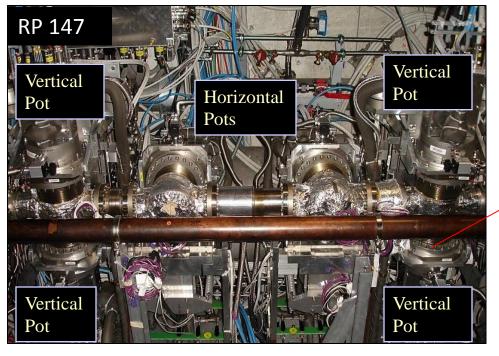
- β* = 1000 m: scheduled for 24 October
 → study CNI region, attempt to measure ρ
- RP insertions in normal physics runs (β * = 0.6 m)
 - hard diffraction together with CMS (high diffractive masses reachable)
 - study of closest possible approach of the horizontal RPs (i.e. acceptable beam losses)
 - → essential for all near-beam detector programmes at high luminosity after LS1
- request a low-pileup run (μ ~ 5 %) with RPs at β* = 0.6 m (in May RPs were not aligned)
 ⇒ study soft central diffraction final states
 with 2 leading protons defining Pomeron-Pomeron mass M² = ξ₁ ξ₂ s
 (good ξ resolution at β* = 0.6 m → σ(M) ~ 5 GeV)
- participation in the p-Pb runs with insertions of the RPs on the proton side
 → study diffractive/electromagnetic and quasi-elastic p-Pb scattering
 p-Pb test run in September with CMS was successful (T2 trigger given to CMS)

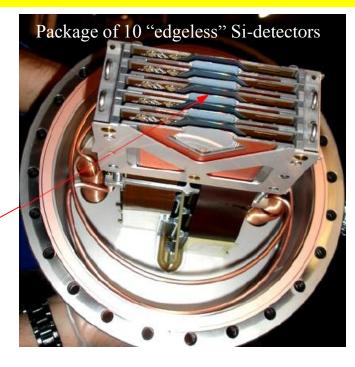
Backup

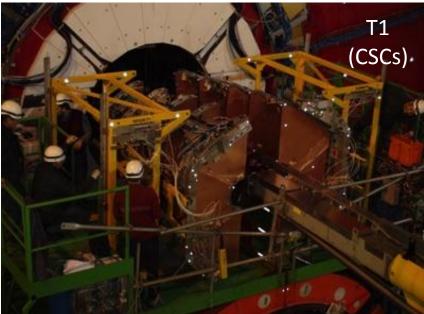

Upgrade of RP detector system at 220 m

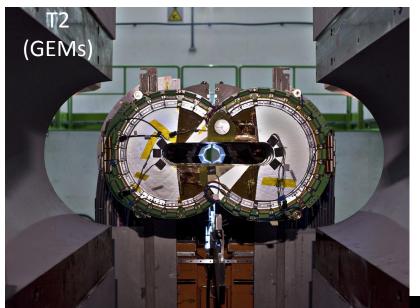
For diffractive physics at high-luminosity (high pileup):

- Installation of additional RPs (horizontal)
- Integration of timing and pixel detectors in horizontal RPs

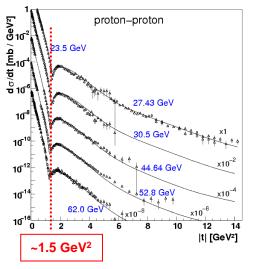

Guideline:

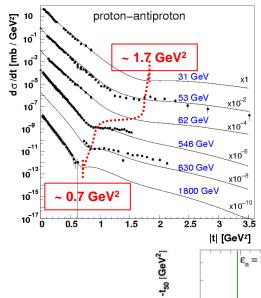

- The present 220m stations must not be affected (touched) by any upgrade activity, until the high beta special runs after LS1 are finished.
- The new horizontal RPs could be installed during LS1 and equipped successively with new tracking & timing detectors.
- Preparation of engineering change request for TCL6 collimator installation started (CMS+TOTEM)

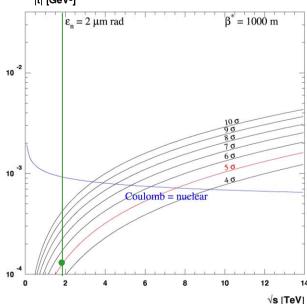




Detectors






After LS1: Elastic Scattering and Total Cross-Section at lower E

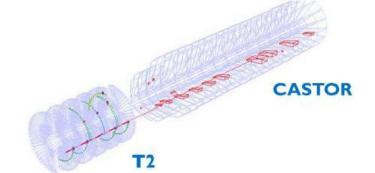
- $\sqrt{s} = 900 \text{ GeV}$: compare with $S\overline{p}pS$
- $\sqrt{s} = 1.8 \text{ TeV}$: compare with Tevatron, help resolving the σ_{tot} ambiguity
- compare $d\sigma_{elastic}/dt$ for pp and $\overline{p}p$ (dip vs. shoulder)

• ρ measurement more precise due to access deep into the Coulomb region:

pA Minimum Bias Physics

Charged particle acceptance (together with CMS): |η| ≤ 6.5

Trigger: one T2 track(?)


dN/dη_{pPb} using T1 & T2 (vs centrality from CMS)

Forward-backward multiplicity correlations?

Central-forward multiplicity correlations?

Pattern recognition at high multiplicity to be optimized

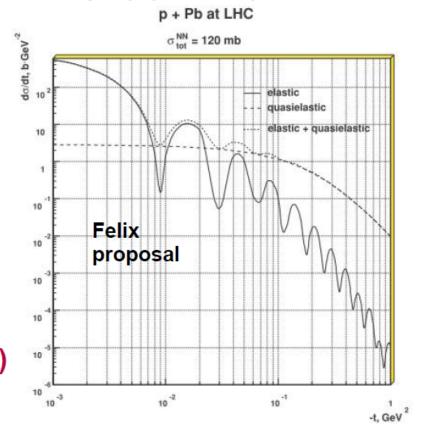
Energy flow & small x: T1+HF, T2+Castor

Cross-sections

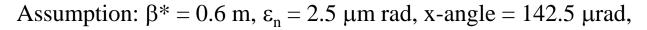
Test of dynamics:

• knockout: p Pb \rightarrow p + d + (A–2)* $\xi^p_{fragment} = (1-(A/Z)_{fragment}/(A/Z)_{Pb})$ measure both p & d (= "p with $\Delta p/p = -0.21$ ") + veto hadron activity.

Need large t for p or significant $\Delta p/p$. Study $\Delta p/p$ & t dependence.


quasielastic: p Pb → p Pb*
 dominates at large t
 measure xi & t of p + only γ

on opposite side (veto hadrons)


Diffraction & γγ

TOTEM

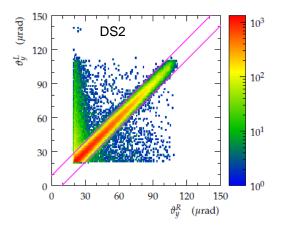
very large Pomeron & γ fluxes but nothing measured in RP on outgoing Pb side (rate problem?)
p with signficant Δp/p (or large t)
+ central object (jets, J/Ψ, Y etc..)

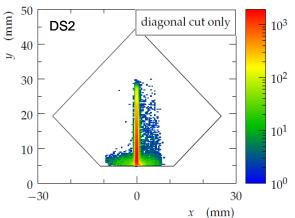
pA with Leading Protons

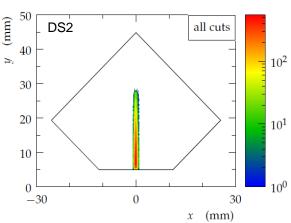
$$L_{y,RP220} = 13.07 \text{ m}, D_{x,RP220} = 0.08 \text{ m}$$

Diffractive protons: $0.026 < \xi < 0.25$ (horizontal RPs @ 14 σ)

Quasi-elastic protons: $|t| > 3.7 \text{ GeV}^2$ (vertical RPs @ 12 σ)

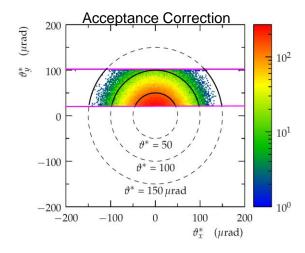

Beam-based alignment for Roman Pots needed.




Elastic Scattering @ 8 TeV, β*=90m: Analysis

- Optics @8 TeV basically the same as @7 TeV (in terms of optical functions)
 - → follow the same analysis steps
- Alignment: RPs aligned wrt collimators; tracks-based alignment; alignment with physics tracks
- Kinematics reconstruction: $\Theta^*_{x,y}$ and x^* Elastic Tagging: collinearity, low ξ , vertex

cut	quantities
diagonal	4 RP hits
1	θ_{χ}^{*R} vs. θ_{χ}^{*L}
2	θ_y^{*R} vs. θ_y^{*L}
3	$ x^{*R} $
4	$ x^{*L} $
5	ϑ_y^{*R} vs. $y^{R,F} - y^{R,N}$
6	ϑ_y^{*L} vs. $y^{L,F} - y^{L,N}$
7	x^{*R} vs. x^{*L}



Elastic Scattering @ 8 TeV, β *=90m: Analysis

- Optics @8 TeV basically the same as @7 TeV (in terms of optical functions)
 - → follow the same analysis steps
- Alignment: RPs aligned wrt collimators; tracks-based alignment; alignment with physics tracks
- Kinematics reconstruction: $\Theta^*_{x,y}$ and x^*
- Elastic Tagging: collinearity, low ξ , vertex
- Acceptance Correction
- Resolution Unfolding
- Normalization: Background Efficiency Luminosity
- Systematics uncertainty determination

