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Concurrent Particle Transportation 

● Hardware architecture is shifting to multiple/many cores 

● Concurrency is the key word for future hybrid systems

● How can we use many-core for HEP/NP simulation?

● Geant4 performance studies with the CMS detector 
shows that core components of particle tracking are
● geometry look-up (navigation, material, B-field) 
● physics models (cross section and energy loss)
● particle transportation

● Concurrent particle transportation engine
● study Geant4 particle transportation on GPGPU
● optimize the transportation process for GPGPU
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Transportation

FieldManager

TransportationManager

GeometryManager Navigator

ChordFinder MagneticField

PropagatorInField

MagIntegratorDriver

MagErrorStepper

EquationOfMotion

ClassicalRK4

G4 Transportation for Charged Particles in B-Field (AlongStepGPIL)
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Particle Transportation

● Particle trajectory: equation of motion in a magnetic field

● Problem definition
● magnetic field calculation
● ODE solver: steppers
● decision trees for accurate advance
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ODE solver: Runge-Kutta Method

● Update a state of particle (x,p,spin,time) for each step

● 4-th order Runge-Kutta (RK4): 4 evaluations of f(x,y) 
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Adaptive Step Size Control
● Miss distance: maximum closest distance from the 

curved trajectory to the chord.

 

● Quick advance if miss distance <  max           
otherwise, computer a new step
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Adaptive Step Size Control
● Truncation errors of step doubling in RK4: difference 

between one big step and two small steps

● Accurate advance if the truncation error <          
otherwise computer a new step
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Hardware: Host and Device
● Host: AMD Opteron Process 6136

● CPU: 2.4 GHz, 4 Processors: total 32 cores

● Device: NVIDIA Tesla M2070
● GPU clock speed: 1.15 GHz
● 14 Multiprocessors x 32 CUDA Cores: 448 CUDA cores
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Software: Interface and Device Codes
● cmsExp

● Geant4 application to study event characteristics of high energy 
particle interactions with a real experiment

● CMS geometry and magnetic field map
● an interface to prepare input data and to test GPU codes

● GPTransportation
● device/host functions invokable from GPU kernels or CPU 
● EM physics, Geometry and Transportation
● a test bench to study and evaluate performance

● ClassicalRK4
● heart of the transportation algorithm optimized for GPU 
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Input Data

● Secondaries produced by single pions (10,100 GeV)

● Majority are electrons (75%) and photons(20%)
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Input Data: Step Length and Energy

● 90% of electron tracks have one step with size << 1cm

● Energies are very soft (E << 1 GeV)
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Performance Measure
● Performance measurements in execution time

● 1 CPU vs. 448 GPU cores
● CUDA event timer
● GPU time = kernel execution + data transfer
● default cuda kernel: blocks=N, threads=128

● Performance evaluations focused on
● data locality
● arithmetic intensity
● throughput
● concurrent streamer
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Performance Measure: Input Data
● CPU/GPU (ratio of processing time) of the transportation 

process for one step advance for all secondary particles 
produced by 100 GeV pions
● electrons only
● position and momentum
● use the step length if nstep=1 (90%) else use the average step 

length (= total track length /nsteps) (10%)  

● Test performance
● Stepper: three evaluation of the4th order Runga-Kutta (RK4)
● Geometry and EM Physics
● full chain of transportation with all decision trees 

● For the sake of comparison, performance gains with a 
fixed step length (1cm) are also measured
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Performance: Data Transfer Rate
● Data transfer for track bundles between host and device

● Minimize data transfer between host and device
● bandwidth device-device is O(102) (GB/sec)
● one large transfer is better than many small transfers
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4th Order Runga-Kutta
● Key components of the transportation stepper (RK4) 

● evaluation of magnetic field (B) values
● rhs of the equation of motion for a given B
● evaluations of the 4th order Runge-Kutta 

● Measure performance with the Runga-Kutta driver for 
the adaptive step size control (three evaluations of RK4)

● Test Geant4 transportation with realistic data
● prepare bundles of (secondary) tracks produced by single 

particles (100 GeV pi-) passing through the CMS detector
● measure processing times for AlongStepGPIL on CPU and GPU
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4th Order Runga-Kutta with Realistic Data
● RK4: Time (kernel only) vs. Time (kernel+data transfer)

● Optimize kernel execution
● overall (kernel+data)/kernel > 2 for adaptive RK4
● minimize data transfer between host and device 
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Geometry on the GPU

● Port a small subset of the Geant4 geometry to CUDA
● navigator and multilevel locator
● basic solids with physical/logical volume

● The primary goals are to
● support the transportation of neutral particles (photons) and 

charged particles without a magnetic field
● complete charged particle transportation in a magnetic field 

including the geometrically limited step control
● enable EM physics processes to compute the proposed step 

length on the device  

● Construct a detector with several solids (box, tubs, trd) 
on CPU and transferred to the global memory on GPU
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Geometry Build and Relocation to GPU

● Adapted from the previous work by CERN (Otto 
Seisaski and John Apostolakis)

● Relocate pointers of physical volumes onto GPU

*WorldVolume on CPU *WorldVolume on GPU

Relocate all Pointers

memCopy geometry
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Geometry Tests

● Construct a simple detector
● worldvolume: 1 box
● Calorimeter: 3 dz x 4 dphi of tubs (PbWO4)

● GPU kernel includes 
● ComputeStep method of navigator

● Tests with electron (secondary) tracks from 100 GeV pi- 
● position and direction from input data
● realistic step size  
● a fixed step (1m)
● number of volumes
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Geometry with Realistic Data

● Navigator::ComputeStep with realistic step sizes 

● For the more number of volumes, processing times are 
increased, but ratios of CPU/GPU stay at the same level
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Geometry with a Fixed Step Size

● Navigator::ComputeStep with a fixed step size (1m)

● Large fluctuations in GPU time measurements except 
for N Blocks = 48, 512
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Transportation with Geometry

● Full chain of the AlongStepGPIL of the transportation 
process with a magnetic field map
● propagator in field
● chord finder and magnetic error stepper

● 4th order Runga-Kutta  

● Limit the proposed step length with a simple geometry
● navigator
● multilevel locator
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Transportation

FieldManager

TransportationManager

GeometryManager Navigator

ChordFinder MagneticField

HOSTDEVICE

Fieldmap

Do-Loop : stepLength

Do-Loop : missDistance

N X 3 calls

Do-Loop : truncationError

PropagatorInField

MagIntegratorDriver

MagErrorStepper

EquationOfMotion

ClassicalRK4

Track data (step size, x, p)cmsExp
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Transportation with Geometry

● Realistic step size (left) and a fixed step size (right)
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EM Physics on GPU

● Most of secondaries are electrons or photons

● Implementing EM physics on the GPU may
● increase the computational intensity
● Enable to make a multiple stepping possible

● CUDA codes are mainly developed by Dongwook Jang 
(Carngie Mellon University)

● Currently, only Bremsstrahlung is implemented 

● EM physics kernel will include
● PostStepDoIt process, handling secondaries
● Compton, Ionization, conversion, photon electric effect
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EM Physics: Bremsstalung

● See Dongwook’s talk for implementation details
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EM Physics: Bremsstrahlung

● Look-up table (left): default in Geant4

● On-the-fly calculation for electrons with E = 1GeV (right)

● The higher gain of the On-the-fly calculation is expected  
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EM Physics: Bremsstrahlung

● Processing time: Lookup table (left) vs. On-the-fly (right) 

● Processing time: Lookup table << On-the-fly 
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EM Physics: Bremsstrahlung

● On-the-fly calculation for realistic data (low energies) 

● Low CPU/GPU gain is due to a simple calculation when  
E < 0.5 MeV which reduces the arithmetic intensity
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Transportation Engine

CPU GPU
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Transportation+Geometry+EMPhysics

● For realistic steps 

● EM Physics (Bremsstrahlung, Lookup table) improves 
the gain marginally.  Plan to add more processes.
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Transportation+Geometry+EM Physics

● For a fixed step lengh = 1cm 
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Dependence: Momentum and Step Length
● CPU/GPU for the first step of secondary tracks

● Optimize calculation uniformity: multiple streamer
● Keep GPU multiprocessors equally busy
● group tracks with same number of RK4 evaluations as possible
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Magnetic Field Access : Texture memory
● Texture memory is cached on chip and designed for 

memory access with spatial locality (magnetic field map)

● Texture interpolation twice as fast as the explicit 
interpolation for random access

 



Step. 10, 2012 Particle Transporation on GPU 35

Concurrent Kernel/Stream
● Multiple CUDA streams provide the task parallelism 

(kernel execution and memory copies simultaneously)  

● Using multiple CUDA streams for the Runga-Kutta diriver 

● no significant gain observed: balance work load evenly
● add more calculations on device
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Conclusion I
● A core part of Geant4 particle transportation has been 

tested on GPU 
● ratio of processing time for CPU/GPU ~ 30 with realistic data 

using 448 cuda cores 
● Identified key factors to maximize the GPU’s ALU capacities  

● Lessens learned
● increase computational intensity on GPU
● look for other transportation algorithms suitable for uniformity of 

calculations
● organize input data for optimal efficiencies of kernel executions 

and data transfers
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Conclusion II: Outlooks
● Geometry 

● add more solids
● voxelized navigation  

● EM physics
● add more physics processes
● generalize the transportation process including post step 

actions and pipelines for handling hits and secondaries

● Optimize GPU resources
● more tests for multiple CUDA streams (concurrent kernel 

execution and copying data up/down to GPU)
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