Prototyping Geant On GPU

Philippe Canal, Daniel Elvira
Soon Jun, James Kowalkowski
Marc Paterno, Panagiotis Spentzouris
Fermilab
Dongwook Jang
Carnegie Mellon University

Geant4 Collaboration Meeting, September, 2012

Overview

- Charge and Goals
- Prototypes
- Results and Conclusions

Note: This is a summary presentations, additional details are available in the two additional detailed presentations available from the meeting agenda.

Charge

- Develop and study the performance of various strategies and algorithms that will enable Geant4 to make efficient use of multiple computational threads
- Analyze the internal architecture of Geant4
- Profile and document performance and memory requirements for typical HEP applications
- Identify components that require re-engineering
- Begin developing prototypes of the new components

Specific Goals

- Investigate porting specific portion of Geant4 to GPU and answer the questions:
 - What is the performance?
 - What modifications does it imply?
 - How can it be integrated with general purpose code?

Specific Goals

- Understand
 - Geant4 code structure
 - Coding and Optimization on GPU (Tesla)
 - How the two can be matched
 - If the same style of modification benefits CPU code
- Provide Feedback to global re-engineering effort

How

- Bottom-up approach
 - Extract time consuming proportion of the code
 - Feed prototype with realistic data
 - Captured from running a full Geant4 example
- Experimental software environment: cmsExp
 - CMS geometry (GDML) and magnetic field map (2-dim grid of volume based field extracted from CMSSW)
 - Shooting 100 GeV Pions

What

Equation of motion in magnetic field (Stepper)

- Classical 4th Order Runge Kunta
- Include simple magnetic field lookup
- CUDA implementation and optimization
- Trying out various techniques and memory layout
- Tested texture memory and CUDA Streams

Geometric limit of step length

- Navigator and multilevel locator
- Limited set of shapes
 - Original work by CERN summer student (O. Seisaski)
- Simple detector similar in structure to the CMS central electromagnetic calorimeter

What

Particle Transportation (no physics)

- Combines stepper and geometry
- Extended to particle propagation component
 - Focus on the magnetic field case
- Support the transportation of neutral particles (photons) and charged particles without a magnetic field
- Complete charged particle transportation under a magnetic field including the geometrically limited step control.

What

EM Physics on the GPU

- Tested both cross section table and on the fly calculation
- Simple material (Stolzite, PbWO₄)
- A physics model : bremsstrahlung for this study
 - PostStepGetPhysicalInteractionLength
 - PostStepDolt : not done yet

Particle Transportation with EM Physics

Combination of all the prototypes

Hardware

- Host: AMD Opteron Processor 6136
 - 4 CPU: 2.4 GHz, Processors: 8 cores
 - L1/L2/L3 Cache Size:
 128/512/12288 (KB)
 - L3 Cache speed: 2400 MHz

- **Device**: NVIDIA Tesla M2070
 - GPU clock speed: 1.15 GHz
 - 14 Multiprocessors x 32 CUDA
 Cores: 448 CUDA cores
 - Memory: global 5.4 GB,
 constant 65 KB, shared 50KB
 - L2 Cache size: 786 KB
 - Maximum thread per block:1024
 - Warp size: 32
 - cuda Capability Major/Minor:2.0

Performance Numbers

Ratio of Processing Time: CPU/GPU	Kernel (Computation) Only	Kernel + Data Transfer
Stepper	67	29
Geometric limit of step length	74	32
Particle Transportation (no physics)	33	27
EM Physics	88	9
Particle Transportation with EM Physics	34	30

Cost Comparison

- Est for NVIDIA Tesla M2070: \$2500
- Est price of CPU (Opteron Processor 6136): \$1000 -> One core \$125
- Roughly a whole node consume half as much energy as a GPU card.
 - In some cases, this ratio can reach 1 or more (CPU uses as much as GPU)
- GPU Card 30 faster than one commodity Core
 - GPU Card 3.75 faster than one CPU (8 cores)
- GPU Card 20 x the price of one Core
 - GPU Card 2.5 x the price of one CPU
- Per unit of work (per gflops), the GPU costs:
 - 2/3 of the purchasing price of the CPU
 - At most 54% of the operating cost of the CPU (18% for well tuned code)

Lesson Learned

- Gain greater than cost differential
- Optimization increase those gains
- Limiting factor: cuba kernel setup and transfer speed
 - Requires limiting the frequency of data exchanges
- Texture memory
 - Help in truly random memory lookup
- cupa Streams
 - Hide (most of) data transfer latency as long as computation time is greater or equal to transfer time.

What's next

- More complex magnetic field lookup (ATLAS?)
- Other equation of motion integrator (Nystrom)
- Extend the geometry set
- Explore implementation strategy for geometrical algorithm
- Optimize existing prototypes
- Test on other upcoming platforms (MIC / Knights Corners)