
M. Joos – Introduction to VMEbus 1

An introduction to VMEbus

Overview

• What you already should know

• VMEbus

• Introduction

• Addressing

• Single cycles

• Block transfers

• Interrupts

• VME64x

• System assembly

• Single Board Computer

• Software

• Tools

Markus Joos, CERN

O
011110111101

M. Joos – Introduction to VMEbus 2

What you already should know

• C(++) programming

• use of pointers

• signals

• data types (char, short, int)

• (use of C++ methods)

• Linux

• Makefiles

• gdb

• Shared libraries
• Usually the environment variable LD_LIBRARY_PATH tells the linker where to find

shared libraries

• Handling drivers (insmod, device nodes, files in /proc)

• General operation (cd, ls, mkdir, etc.)

M. Joos – Introduction to VMEbus 3

1982

Michael Jackson - Thriller Falklands War

Foundation of Sun

Microsystems First computer virus

IEEE 1014 - VMEbus

First implantation of an

artificial heart

VMEbus in action

M. Joos – Introduction to VMEbus 4

The VMEbus crates of the ATLAS RPC detector

VMEbus in action

M. Joos – Introduction to VMEbus 5

A single ROD crate

Detector interface TTC interface

P
ro

ce
ss

o
r

b
o
ar

d

VMEbus in action

M. Joos – Introduction to VMEbus 6

More examples of

VMEbus systems

in ATLAS

In total there are

about ~150 crates

in ATLAS and

they will stay for

another 5-10

years

CMS and ALICE

use VMEbus too

M. Joos – Introduction to VMEbus 7

Why VMEbus?
• (Complex) DAQ systems often require custom built electronics modules

which have to be:

– Housed

– Powered

– Configured & monitored

– (Read out)

• VMEbus has traditionally been the technology of choice in many HEP

experiments and accelerator control systems because it offers features such

as:

– A well proven open standard that includes mechanical, electrical and protocol

sections

– Suitable card sizes

– A data transfer protocol that is relatively easy to implement e.g. in FPGAs

– An “ecosystem” of third party products (crates, processors, I/O modules, etc.)

which are supported by the manufacturers for long durations

• Currently there are more than 1000 VMEbus systems at CERN (accelerator

& experiments)

M. Joos – Introduction to VMEbus 8

VMEbus mechanics

VMEbus cards exist in 3 standard heights: 3U, 6U and 9U (1U = 1.75 inch)

and 2 depths: 160 mm (3U, 6U) and 340 mm (9U)

160 mm

160 mm
340 mm

9U 6U 3U

All cards are 0.8 inch (20.3 mm) wide

M. Joos – Introduction to VMEbus 9

VMEbus mechanics (2)
Backplane

J1

3U module

P1

P1

6U module

P2

P0

P1

P2

P0

9U module
P3

Backplane

J1

J2

J0

J3

6
U

 t
ra

n
si

ti
o
n

m
o

d
u

le

J1

J2

J0

Backplane

9
U

 t
ra

n
si

ti
o
n
 m

o
d

u
le

In 6U and 9U systems there can be transition modules installed on the rear side of the backplane.

Transition modules do not connect to VMEbus but just to the module on the opposite side of the

backplane via the user defined pins of the J0, J2 and J3 connectors

M. Joos – Introduction to VMEbus 10

VMEbus mechanics (3)

5 row P1 connector

160 pins used for VMEbus

P0 connector
Used for PMC I/O

Incompatible with certain

crates (Jaux, VME64xP)

5 row P2 connector

32 pins used for VMEbus

Other pins user defined (e.g.

for transition modules)

Injector / extractor handles

with push button

Alignment pin

Incompatible with certain old crates

40 kg
Insertion force

(415 pins * 1 N)

Example: 6U VME64x module

Discharge strip

M. Joos – Introduction to VMEbus 11

VMEbus crates

21 slot 6U crate

for 19” racks

21 slot 9U crate

(with 6U section)

for 19” racks

• There are different types of power supplies (5V, +/- 12V, 3.3V, 48V)

mounted locally or remotely

• The fan-tray unit allows to monitor parameters like voltages, currents, fan

speeds, temperatures

• (Some) crates can be remotely controlled e.g. by a field bus (CAN)

• ATTENTION: The EMC gasket to the left of slot 1 may damage your VMEbus cards

M. Joos – Introduction to VMEbus 12

VMEbus Backplane

J1

J0

J2

J3 (9U

crates

only)

Front view

Slot 1

Daisy-chain

jumpers (only

on some old

backplanes)

BG0

BG3

BG2

BG1

IACK

Automatic 6U VME64x backplane

M. Joos – Introduction to VMEbus 13

VMEbus basics

• Classes of modules (logical)

– Master

• A module that can initiate data transfers

– Slave

• A module that responds to a master

– Interrupter

• A module that can send an interrupt (usually a slave)

– Interrupt handler

• A module that can receive (and handle) interrupts (usually a Single

Board Computer)

– Arbiter

• A piece of electronics (usually included in the SBC) that arbitrates

bus access and monitors the status of the bus. It should always be

installed in slot 1 of the VMEbus crate if interrupts are used

M. Joos – Introduction to VMEbus 14

VMEbus basics (2)
• Electrical properties

– All lines use TTL levels

– Low = 0 ... 0.6 V

– High = 2.4 ... 5 V

– Address, address modifier and data lines are active high

– Protocol lines (e.g. AM, LWORD, DS0/1) are active low

• Protocol
– Asynchronous with 4-edge handshaking

– The duration of a VMEbus cycle depends on the speed of the master and
the slave

• Byte ordering
– VMEbus is big endian. It stores the most significant byte of a 32-bit word

at the lowest byte address (0x0)

– PCI and Intel CPUs are little endian. They store the most significant byte
of a 32-bit word at the highest byte address (0x3)

– Not all VMEbus SBCs have automatic byte swapping logic

M. Joos – Introduction to VMEbus 15

VMEbus basics (3)
• Main types of data transfers

– Single cycles
• Transfer 8, 16 or 32 bits of data (typically) under the control of the CPU on the master

• Mnemonic: D8, D16 and D32

• Typical duration: ~1 µs + S/W overhead

– Block transfers (DMA = Direct Memory Access)
• Transfer any amount of data (usually 32 or 64 bit at a time) under the control of a

DMA controller (CPU independent)

• Mnemonic: D32BLT and D64MBLT

• Data is transferred in bursts of up to 256 (D32) or 2048 (D64) bytes

• Typical duration: 150 ns per data word

– Interrupts
• Used typically by slaves to signal a condition (e.g. data available, internal error, etc.)

• Can (in principle) have 7 priorities

• The interrupter provides an 8-bit vector on request of the interrupt handler to identify
itself

• ROAK (Release on Acknowledge) or RORA (Release On Register Access)

• VMEbus addresses
– Either 16, 24 or 32 valid bits. Mnemonic: A16, A24 or A32

– A40 and A64 defined but very rarely used

M. Joos – Introduction to VMEbus 16

VMEbus protocol

• Some designers make mistakes and their VMEbus cards do not work at all
or fail in combination with certain other cards

• Debugging VMEbus traffic by S/W (printf(), gdb, etc.) is difficult or even
impossible

• A great help for fixing such problems are VMEbus analyzers

• A VMEbus analyzer also tells you if you are really executing the desired
types of cycles (e.g. D8, D16, D32, etc.)

• In order to understand the output of such an analyzer you have to have some
knowledge of the protocol

Why do I have to understand how the protocol

works if I am not designing cards?

M. Joos – Introduction to VMEbus 17

Important signals

Name Description

BBSY*

Bus Busy. Once a master has been granted the bus it drives BBSY*. As long as BBSY* is

asserted no other master can get the bus

A[31..1] Address lines (can carry data in D64 multiplexed transfers). A00 does not exist

D[31..0] Data lines

AM[5..0] Address modifier. Defines the number of valid address bits and the cycle type

DS0* and DS1* Data strobes. Tell the slave when the master is ready. Also encode the number of bytes to be

transferred

LWORD* Contributes to the definition of the transfer size and carries data in multiplexed block transfers

AS* Address Strobe. Tells the slaves when the address on the bus is valid

WRITE* Defines the direction of the data transfer

DTACK* Data acknowledge. Used by a slave to tell the master that it has read / written the data

BERR* Bus error. Used by slaves or arbiters to signal errors

IRQ1* .. IRQ7* Interrupt request lines. Asserted by the interrupter

IACK*

Interrupt acknowledge. Used by the interrupt handler to retrieve an interrupt vector from the

interrupter

Note: “*” denotes active low signals

M. Joos – Introduction to VMEbus 18

Arbitration
• Before a master can transfer data it has to request the bus. It does this by

asserting one of the four bus request lines
– These lines (BR0, BR1, BR2 and BR3) can be used to prioritize requests in multi-

master systems

• The arbiter (usually in slot 1) knows (by looking at the BBSY line) if the bus is
busy or idle. Once it is idle it asserts one of the four Bus Grant Out lines
(BGOUT 0..3)

• If a master detects a “1” on the BGIN line corresponding to its BR it claims the
bus by asserting BBSY (otherwise it passes BGIN on to BGOUT to close the
daisy chain)

BR*

BG*

BBSY*

Color code: Arbiter - Master

Slot N Slot N+1

BGIN

BGOUT

BG daisy chain

M. Joos – Introduction to VMEbus 19

Arbitration (2)

• The arbiter can use different schemes: PRI (priority based),
RRS (round robin)

– Not an issue for single master systems

• If two masters use the same bus request level the one
closer to slot 1 inherently has a higher priority (because it
detects BGIN first)

• Modern masters support “fair arbitration”. I.e. they delay
their bus request if other masters are requesting the bus at
the same level

• A master may get stuck if the BG daisy chain is not closed

M. Joos – Introduction to VMEbus 20

Addressing
• The VMEbus backplane has 31 address lines: A01..A31

• There is no A00 address line on the backplane. This information is encoded
in the DS0/1 protocol lines

• A slave is selected by two criteria:

– Address (usually 16, 24 or 32 valid bits)

– Address modifier (6 bits). It defines:

• The number of valid address bits

• The access mode (user/supervisor, program/data, CR/CSR)

• The transfer type (single cycle or block transfer)

• Typically slaves respond to only one address width (A16, A24 or A32; read
the manual of the slave) but may allow both single cycles and block
transfers

• The base address of a slave can be set:

– Mechanically: on-board jumpers or switches

– By S/W: VME64x geographical addressing, CR/CSR

M. Joos – Introduction to VMEbus 21

Addressing protocol

• First the master drives AM, Address and LWORD*. Then it waits 35 ns and
finally drives AS* to validate the information

• The slave has to decode the address information within 40 ns (even though
most masters keep AS* asserted much longer)

• The master does not know if a slave has accepted the address information. It
continues with the data transfer until it either receives a DTACK* or a BERR*

• If two or more slaves believe to be addressed you have a problem…

Color code: Master

AM[5..0]

A[31..1]

LWORD*

AS*

invalid valid

invalid valid

invalid valid

35 ns 40 ns

The timing parameters mentioned

here are two of about 50 in the

VMEbus standard. The standard

also distinguishes master and slave

timing (bus skew)

M. Joos – Introduction to VMEbus 22

Single cycles

BR*

BG*

AS*

Address/AM

Data

DS*

DTACK*

BERR*

Color code: Master - Slave - Arbiter

Example: (Simplified) write cycle

undefined defined

undefined defined undefined

undefined

Arbitration

1

5 3 4

2

1: Master drives address and AM

code. Then it asserts AS

2: Master puts data on the bus. Then it

asserts DS

3: Slave latches data and drives

DTACK

4: Master removes DS

5: Slave removes DTACK

6: Master releases Address, AM and

data lines. Then it releases AS

6

M. Joos – Introduction to VMEbus 23

Single cycles (2)
• The number of bytes to be transferred (1, 2 or 4) is encoded in the

DS0, DS1 and LWORD protocol lines

• Remember that some slaves support only certain data widths (e.g. D8

and D16 but not D32)

• The VMEbus address should be aligned to the data size

– Reading a D32 word e.g. from address 0x000003 may not be a good idea

• VMEbus also supports (rarely used) read-modify-write cycles (useful for semaphores)

• Remember that VMEbus is big endian. Example:

Address Action Result

0x00000000 D32 write 0x11223344 --

0x00000000 D32 read 0x11223344

0x00000000 D8 read 0x11

0x00000003 D8 read 0x44

M. Joos – Introduction to VMEbus 24

Block transfers

• The Block transfer protocol is based on the single cycle protocol

• The address lines on the backplane do not change state during the transfer. Both
master and slave use internal counters to keep track of the address

• As the address lines are not used they can carry data: 64-bit multiplexed DMA
In this case the slave uses DTACK for two purposes:
– Directly after the assertion of AS to acknowledge the address

– After each assertion of DS to acknowledge the data

AS

Address/AM

Data

DS

DTACK

undefined defined

undefined defined undefined

undefined

defined defined defined

Color code: Single cycle protocol – block transfer

Example: D32 write

M. Joos – Introduction to VMEbus 25

Block transfers (2)
• A master must not cross a 256 bytes (D32) or 2048 bytes (D64) address

boundary respectively without releasing AS (transparent to the user)
– This is to give other masters a chance to acquire the bus before too long

• Reading out single address FIFOs is not foreseen by the standard and requires
special masters

• Designing a slave that terminates a block transfer from a FIFO with a bus
error is legal but bad practice. It does not work for all masters

• VMEbus interface chips on SBCs may require a relative alignment of the
remote (VMEbus) and local (PCI) addresses

– E.g. in case of the Tundra Universe chip the VMEbus and PCI addresses must be 8-byte
aligned with respect to each other

• Contiguous buffers
– Memory obtained with malloc() may be fragmented. Most DMA controllers,

however, work better with contiguous buffers

– Contiguous buffers can be provided by special drivers (e.g. ATLAS: cmem_rcc)
based on kernel functions (e.g. get_free_pages) or directly from (very recent)
Linux kernels

M. Joos – Introduction to VMEbus 26

VMEbus typical performance
• Being a handshaked, asynchronous protocol there is no fixed transfer rate. The

timing parameters (see VMEbus standard) however set an upper limit.

• Single cycles: Typical performance = 1 µs per transfer

– D8 = 1 MB/s

– D16 = 2 MB/s

– D32 = 4 MB/s

• Write posting decouples PCI and VMEbus cycle. This increases the
performance to ~ 10 MB/s for D32

• Block transfers

– D32 = 20..25 MB/s (theoretical: 40 MB/s)

– D64 = 40..50 MB/s (theoretical: 80 MB/s)

M. Joos – Introduction to VMEbus 27

Bus errors

• In VMEbus errors can occur under two conditions
– A slave has been addressed but is incapable of performing the requested transfer. In

this case the BERR signal is issued by the slave and reaches the master within a few
µs.

– The master has issued an address that no slave recognizes. Such cycles get
terminated by the bus monitor (arbiter) by asserting BERR after a programmable
delay (typical values are 16 or 256 µs)

• In most cases a bus error gets converted into a PCI interrupt. Handling this
interrupt is a job for the device driver.

• The delivery of the error to the user process can be:
– Synchronous: Safe but slow

– Asynchronous: Fast but potentially ambiguous

M. Joos – Introduction to VMEbus 28

Interrupts
• VMEbus provides 7 interrupt levels (= bus lines) to prioritize interrupts

• Each interrupter can use any level

• There must only be one interrupt handler for each level

• The interrupt handler uses (under H/W control) a special type of single cycle (IACK
cycle) to obtain an 8-bit vector from the interrupter. This vector (set by jumpers or S/W)
must be unique (within the crate) and identifies the source of the interrupt

• There are two types of interrupters:
– ROAK (preferred)

• The IACK cycle clears the interrupt

– RORA
• The interrupt is cleared by an additional register access (single read or write cycle)

• Typically an interrupt gets handled by the H/W in a few µs (once the VMEbus is free).
However there can be additional (possibly large) S/W overheads depending on the
operating system used and the state of the CPU

– Keep in mind that standard Linux is not a RTOS

• If two interrupters are active at the same time and on the same level the one closer to slot 1 will be
serviced first (IACK daisy chain)

IACKIN

IACKOUT

Slot N Slot N+1

M. Joos – Introduction to VMEbus 29

VME64x

• VME64x is a set of extensions to the VMEbus standard made in 1997

• Most features are optional and fall into one of four categories:
– Mechanics

• 5-row P1/J1 and P2/J2 connectors

• J0/P0 connector

• Alignment pin

• EMC gaskets

• Injector / extractor handles

• Discharge strips

• Card keys

• Solder side covers

– Plug-and-play
• Geographical addressing (access a module by its slot number)

• CR/CSR space: Standardised registers for the automatic configuration of a module
(base address(es), interrupt vector(s), etc.)

– Power
• 3.3 V and 48 V

• Additional 5 V

– 2eVME Protocol: A rarely used way of speeding up block transfers (theoretical
bandwidth: 160 MB/s)

M. Joos – Introduction to VMEbus 30

CR/CSR space access and geographical

addressing
• “Classic” VMEbus slaves use on-board jumpers or switches for the

initialization of the base address and the interrupt vectors

• The VME64(x) standard proposes a S/W based mechanism (plug-and-play)
The basic principles are:
– Each slave has a special window of 512 kB consisting of a Configuration ROM

(CR) and a Control and Status Register (CSR) section

– Access to this window is in A24 mode with AM=0x2f

– The address of that window is either set by jumpers (VME64) or derived from
the slot number (geographical addressing, VME64x) with the formula:

address = slot# * 0x80000

– The CR/CSR space contains many (mostly optional) features to specify and
control the functions of a slave board

– Slave boards are identified by a manufacturer + board ID stored in the CR. These
IDs have to be unique

– The most important CSR space registers are the eight ADER registers. They are
used to define the base address(es) of the main function(s) of the slave.

M. Joos – Introduction to VMEbus 31

2eSST

• 2eSST = 2 edge Source Synchronous Transfer

• An addition to the VME64x standard (since 1999)

• It defines a synchronous protocol for VMEbus block transfers

• Three transfer speeds are defined: 160, 267 and 320 MB/s (8 bytes @

20, 33.3 and 40 MHz)

• Allows for data broadcast and multicast

• Works only reliably on high quality backplanes (incident wave switching) and with

special (Texas Instruments) driver chips

• There exist (so far) only a hand full of VMEbus modules built to this standard

M. Joos – Introduction to VMEbus 32

The VMEbus single board computer
• Usually this is the only master and interrupt handler in the crate

• It often also provides the arbiter functionality (and should therefore be
installed in slot 1, despite what will be said about cooling)

• It behaves like a normal PC

– Operating system: Linux, (RT OS, Windows)

– Development tools: gcc, g++, gdb

– Environment: Shell, Xterm, vi, emacs

– Accessed via: RS232, Ethernet, VGA

• It interfaces to VMEbus via a PCI device
– Typically Tundra Universe / IDT Tsi148

– Depending on the model and the S/W used the VMEbus I/F has to be
configured in the BIOS or at start-up by special programs

• Some SBCs can be equipped with mezzanines (PMC, IP) but this
is another story

M. Joos – Introduction to VMEbus 33

The VP110 SBC (used in the exercises)

CPU Pentium III @ 800 MHz

RAM 512 MB

VMEbus interface Tundra Universe

PMC sites

Two. 32 or 64 bit, 33 or 66 MHz, (can be configured for 5V or 3.3V signaling)

Mass storage

Connection of IDE hard disks and floppy drives possible via P2 adapter board

(requires 5-row VME64x backplane) A hard disk can also be installed on-

board. This takes one of the PMC slots

Network interface

Two channels, 10 / 100 Mbit/s, RJ45 on front panel (based on the 82559ER

interface chip)

Mechanics VME64x compliant: 5-row P1 and P2, P0 (optional), front panel with

alignment pin and injector / extractor handles (alternative solution for 3-row

VME backplanes exists), solder side cover

Terminal connection RS232 via front panel RJ45 connector, no VGA / mouse / keyboard (can be

added by additional PMC module)

M. Joos – Introduction to VMEbus 34

Other VMEbus masters and interfaces

• PC to VMEbus interfaces

– Available from several manufacturers

– A set typically consists of a PCI card, a VMEbus card

and a cable (copper or optical fiber)

– Also available: VMEbus master with USB interface

• VMEbus repeaters

– Allows a master in crate 1 to access a slave in crate 2

– A set consists of two VMEbus cards and a cable

– There is usually a performance penalty
• VMEbus to CAMAC interface

– Allows a master in a VMEbus crate to control a CAMAC crate

– A set consists of a VMEbus slave, a CAMAC crate controller and a cable

M. Joos – Introduction to VMEbus 35

Subsystem buses

• VXS (-> next lecture)
– A recent addition to the standard

– It allows each VMEbus card to connect to a switch fabric.

– Initially it uses the Ethernet protocol but other technologies (e.g. PCIe) are
possible as well

• Custom P3
– In 9U crates the P3 is totally user defined

– Special backplanes are possible too
• VSB (VME Subsystem Bus)

– Obsolete.

– Provides a 32 bit bus for up to 8 adjacent cards

– Was used to interface to FASTBUS

The P0, P2 and P3 connectors have a number of user defined pins. They can be
used to implement specialized communication channels independently from the
VMEbus protocol. Examples:

M. Joos – Introduction to VMEbus 36

System integration
• Find the right crate for your modules

– J0 / Jaux incompatibility

– VME64x (alignment pin, geographical addressing)

• Find out if your crate still has BG/IACK jumpers
– Rule: Each slot must be equipped with 1 card or 5 jumpers

– Attention: Jumpers may be on either side of the J1 connector depending on backplane type

• Card handling and insertion
– VMEbus cards can be sensitive to electrostatic discharge. Take precautions

– Never add or remove a card if the crate is switched on

– Depending on the type of module the insertion force is between 20 and 50 kg. Check twice
that the card really has been inserted properly!!

– Do not trust LEDs on the front panel. On certain (VME64x) cards the power pins are longer
than the protocol pins.

• Cooling
– Avoid installing CPUs in the leftmost or rightmost slot

• (there are special arbiter modules)

– Leave one or two slots empty between cards, if possible

– Close the front of the crate with blind panels

– Check the fan speed

– Check if your VMEbus cards have temperature sensors

• Address lay-out
– Check that the address windows of the slave modules do not overlap

– Try to map similar slaves (e.g. A32, A24) to consecutive address ranges

M. Joos – Introduction to VMEbus 37

VMEbus S/W

• In (almost) all cases access to the VMEbus is via a device driver

• The driver allows to use the VMEbus in multi-processing environments

• Interrupts are handled by the driver and signalled to the user application e.g. by means
of signals or semaphores

• The drivers typically provide DMA request lists. A block transfer may therefore not
take place immediately but be delayed by other DMA requests

• Accessing the bus via a driver has disadvantages too
– Additional overhead due to context switching (S/W overhead can be 10 * H/W latency)

– Drivers are difficult to debug

– Sometimes commercial drivers lack desirable features and performance

• The “ATLAS approach”: We have developed our own driver and library
– Reduces dependency on commercial companies

– Allows for the implementation of performance optimized code

• Driver can be bypassed for fast H/W access

• Use of contiguous memory optimizes transfer of large blocks of data

– May not be justifiable for smaller projects

True “Real time” S/W is rarely required (→ buffer chains)

(Linux) Drivers

M. Joos – Introduction to VMEbus 38

VMEbus S/W (2)

• The driver is not used directly by the application but via a user library

• There is no standard API for such libraries
• Switching from one type of master to another imposes issues for S/W

portability

Performance optimization
• Avoid memcopy(); just pass pointers

• Avoid context switching (bypass drivers)

• Avoid single cycles (this may require special features at the H/W level)

• Use contiguous buffers (for efficient DMA)

• Don’t be too generous with interrupts (less context switching)

• Only implement the features you need (e.g. multi-processing support)

• Understand the latencies in your S/W -> profiling

Libraries

M. Joos – Introduction to VMEbus 39

Debugging tools

• H/W (Examples)

– VMEtro VBT325 bus analyzer

• Stores up to 16000 VMEbus cycles

• Powerful trigger and sequencer

• Supports protocol analysis

• To operate it you need a VT100 (Falco) terminal or a PC with a

terminal program (e.g. HypeTerm, minicom, kermit, putty)

– CES VMDIS8004

• Low cost bus monitor. Displays the most recent cycle

• Can latch the first cycle with a bus error or an interrupt

• Has a built in arbiter (useful if SBC runs hot in slot 1)

• S/W
– Standard tools for code debugging (gdb, printf(), etc.)

– Special tools depend on the S/W package (driver, library)
Note: This slide

contains product

placement

M. Joos – Introduction to VMEbus 40

Links for further information

• VMEbus standard

– www.vita.com (unfortunately the standard is open but not freely available)

• Atlas S/W

– https://edms.cern.ch/document/325729/4

– https://edms.cern.ch/document/349680/2

– https://edms.cern.ch/document/336290/3

– https://edms.cern.ch/file/325729/4/wrapper.pdf

• Alternative open source VMEbus drivers for Linux

– http://www.kroah.com/log/linux/vme-drivers.html

• VMEbus market overview

– http://www.vita.com

M. Joos – Introduction to VMEbus 41

The End

Additional slides

The slides below provide additional information at a more

detailed level. Some of them are based on the VMEbus S/W

that was developed at CERN for the ATLAS and ALICE

experiments. Keep in mind that the library functions and

applications of this S/W package are different from other

(commercial or public domain) packages for VMEbus access

M. Joos – Introduction to VMEbus 42

M. Joos – Introduction to VMEbus 43

Use of pointers to generate VMEbus cycles

unsigned int ui_data, *ui_ptr, virtual_address;

unsigned short us_dat, *us_ptr;

unsigned char uc_data, *uc_ptr;

Main()

{

virtual_address = Map_VME_module(physical_address, AMcode , …); //Hypothetical function

ui_ptr = (unsigned int *) virtual_address;

us_ptr = (unsigned short *) virtual_address;

uc_ptr = (unsigned char *) virtual_address;

ui_data = *ui_ptr; //D32 read

*ui_ptr = ui_data; //D32 write

us_data = *us_ptr; //D16 read

*us_ptr = us_data; //D16 write

uc_data = *uc_ptr; //D8 read

*uc_ptr = uc_data; //D8 write

ui_data = ui_ptr[0]; // equivalent to *ui_ptr;

ui_data = ui_ptr[4]; // Read D32 at offset 0x10 (4 * 4 bytes)

uc_data = uc_ptr[4]; // Read D8 at offset 0x4 (4 * 1 byte)

}

M. Joos – Introduction to VMEbus 44

Signal handling
#include <signal.h>

//Prototypes

void SigBusHandler(int signum);

main

{

 struct sigaction sa2;

 sigemptyset(&sa2.sa_mask);

 sa2.sa_flags = 0;

 sa2.sa_handler = SigBusHandler;

 stat = sigaction(SIGBUS, &sa2, NULL);

 if (stat < 0)

 {

 printf("Cannot install SIGBUS handler (error=%d)\n", stat);

 exit(-1);

 }

}

void SigBusHandler(int signum)

{

 printf(“Bus error received\n”);

}

M. Joos – Introduction to VMEbus 45

Managing drivers

• Is my driver loaded?

– /sbin/lsmod

• In what state is my driver?

– more /proc/<name> (value of name depends on the driver used.
ATLAS: “vme_rcc”, “cmem_rcc” or “io_rcc”)

• Is the driver currently used

– /sbin/lsmod

– Check the “Used by” number in the third column.

• How to restart a driver

– “Used by” has to be 0

– su (then enter root password)

– cd /etc/rc.d/init.d

– <name> restart (e.g. “vme_rcc restart”)

M. Joos – Introduction to VMEbus 46

(Common) VMEbus AM codes
AM code Description

0x08 A32, user, 64-bit (MBLT) block transfer

0x09 A32, user, data, single cycle

0x0A A32, user, program, single cycle

0x0B A32, user, 32-bit (BLT) block transfer

0x0C A32, supervisor, 64-bit (MBLT) block transfer

0x0D A32, supervisor, data, single cycle

0x0E A32, supervisor, program, single cycle

0x0F A32, supervisor, 32-bit (BLT) block transfer

0x29 A16, user, data, single cycle

0x2C A16, supervisor, data, single cycle

0x2F CR/CSR single cycle (geographical addressing)

0x38 A24, user, 64-bit (MBLT) block transfer

0x39 A24, user, data, single cycle

0x3A A24, user, program, single cycle

0x3B A24, user, 32-bit (BLT) block transfer

0x3C A24, supervisor, 64-bit (MBLT) block transfer

0x3D A24, supervisor, data, single cycle

0x3E A24, supervisor, program, single cycle

0x3F A24, supervisor, 32-bit (BLT) block transfer

M. Joos – Introduction to VMEbus 47

Other information

• For the ATLAS VMEbus library there is a C++ wrapper

– https://edms.cern.ch/file/325729/4/wrapper.pdf

M. Joos – Introduction to VMEbus 48

Glossary
ACFAIL: A line on the VMEbus backplane driven by the power supply. If asserted the +5V power will be available

for at least an other 4 ms and then drop below 4.875 V

BBSY: The protocol line that indicates if the bus is being used (Bus Busy)

BERR: The protocol line that signals a bus error

BG0..3: Protocol lines used by the arbiter to grant the bus to a master

BR0..3: Protocol lines used by masters to request the bus

CR/CSR: Configuration ROM / Control and Status Registers, a feature of VME64(x) slave cards for the plug-and-play
configuration of the on-board functions

Daisy chain: Some of the signal lines of a VMEbus backplane are not bussed but connect only two adjacent slots. In
order to pass a signal from slot N to slot N+m the VMEbus modules in between these slots have to pass the signal
from the input side to the output side. In case of an empty slot the connection has to be made mechanically
(jumper) or automatic (special backplane)

DMA: Direct Memory Access (block transfers)

EMC: ElectroMagnetic Compatibility:

IACK: Protocol line used for the interrupt handshake

J0, J1, J2, J3: The female jacks (connectors) on the VMEbus backplane

Jaux: A special connector sitting between J1 and J2 on some backplanes used at CERN. Required for certain front-end
modules but incompatible with the P0 connector of VME64x

P0, P1, P2, P3: The male plugs on VMEbus cards connecting to the backplane

ROAK: Release On AKnowledge, A type of VMEbus interrupter that clears the interrupt in response to the IACK
cycle

RORA: Release On Register Access, A type of VMEbus interrupter that requires a special intervention from the master
to clear an interrupt

SBC: Single Board Computer

SYSFAIL: A VMEbus line that indicates a problem with one card. SYSFAIL can be monitored e.g. by an SBC where
it would be converted to an interrupt

Write Posting: A way of speeding up single write cycles. The PCI cycle gets acknowledged before the VMEbus cycle
completes. This decoupling of the busses increases the speed but can complicate the detection of bus errors

M. Joos – Introduction to VMEbus 49

The Tundra Universe II ASIC

• Bridges VMEbus to

PCI

• Used on most of the

“vintage” commercially

available VMEbus

processors

• Superseded by the IDT

Tsi148

M. Joos – Introduction to VMEbus 50

The ATLAS vme_rcc package
• The vme_rcc package contains the default VMEbus driver and

library

• Documentation: https://edms.cern.ch/document/325729/4

• Supported H/W: Concurrent Technologies VP110, VP315 and
VP717 as well as some other SBC from that company.

• The source code of both the driver and the library has been fully
developed at CERN and tested on SLC5/6

• Why not using an existing VMEbus driver instead of
developing a new one?

– We wanted to have a sufficiently generic API that could easily be
implemented for any VMEbus interface on a SBC

– Most drivers for the Universe chip lack support for some features

– External code is not necessarily optimized for your type of applications

M. Joos – Introduction to VMEbus 51

Debugging tools
• S/W: The ATLAS vme_rcc package (other packages may have similar

tools)
– Look at the /proc/vme_rcc file of the driver

– In the vme_rcc package you find special applications
• scanvme: Scan VMEbus for modules

• vme_rcc_test: Use the functions of the library interactively. This program is also a
good programming example

• cctscope: Decode and dump the configuration of the Universe chip (and some other
VMEbus related resources) in human readable form

===

LSI VME address range PCI address range EN WP VDW VAS AM Type PCI space

 0 00000000-10000000 90000000-a0000000 Yes No D32 A32 UD SC PCI MEM

 1 00000000-01000000 a0000000-a1000000 Yes No D32 A24 UD SC PCI MEM

 2 00000000-00010000 a1000000-a1010000 Yes No D32 A16 UD SC PCI MEM

 3 00000000-01000000 a2000000-a3000000 Yes No D32 CR/CSR UD SC PCI MEM

 4 00000000-ffffffff 00000000-ffffffff No No D32 A32 UD SC PCI MEM

 5 00000000-00000000 00000000-00000000 No No D32 A32 UD SC PCI MEM

 6 00000000-00000000 00000000-00000000 No No D32 A32 UD SC PCI MEM

 7 00000000-00000000 00000000-00000000 No No D32 A32 UD SC PCI MEM

===

cctscope example output of function 2/2:

M. Joos – Introduction to VMEbus 52

The Universe chip

• The API used in the vme_rcc package is generic enough to fit
(almost) any type of VMEbus interface. So far there exists only an
implementation for the Universe chip. Support for the TSI148 is
also available

• The Universe /TSI148 chips are used on most SBCs but have a
number of limitations:

– There are only 8 map decoders for master and slave pages respectively

• In systems with more than 8 slaves one has to use one decoder for several
slaves. I.e. slaves have to be grouped -> slave base address

– It is not possible to execute block transfers with a constant VMEbus address

• If you are designing VMEbus slaves: Do not implement single address FIFOs
for the read-out of internal memory

– Data can be lost if a block transfer is terminated with a BERR

– Some BERRs (posted write) are difficult to catch. Some SBCs have extra
logic to cope with that

– There is no H/W byte swapping (required on little endian CPUs). Some
SBCs have extra logic for that purpose

M. Joos – Introduction to VMEbus 53

vme_rcc: Overview

• The package provides:

– A VMEbus driver

• To be dynamically installed in the Linux kernel

• You need the cmem_rcc and io_rcc drivers as well

• If you are not using the standard CERN kernels you may have to
compile the drivers yourself

– A library

• There are about 60 functions. Some details will follow

– Utility programs

• vmeconfig / tsiconfig

• cctscope / tsiscope

– Dump the register of the Universe chip and some other resources of
the SBCin human readable form

• scanvme

– Scan the VMEbus for slave cards at unknown addresses

M. Joos – Introduction to VMEbus 54

System initialization

• Before the first VMEbus cycle can be made one has to program
(at least) one of the 8 map decodes with appropriate parameters

• This basically means mapping a range of PCI addresses (MEM
space) to an equally large window of VMEbus addresses

• In many drivers this can be done dynamically at run time via a
function call (but the VMEbus and PCI base addresses still have
to be provided by the user)

• vme_rcc is different. The library cannot modify the set-up of the
map decoders. This is the job of vmeconfig

– Using a static set-up has the advantage that one can not run out of map
decoders in the middle of an application

– This policy enforces some discipline and is therefore not liked by
everybody. We are, however, convinced that it helps to reduce problems

M. Joos – Introduction to VMEbus 55

Address spaces
VME addresses

I/O space

memory

PCI

CPU addresses

0x0

4 GB

A32 (4 GB)

A24 (16 MB)

A16 (64 kB)

Universe ASIC

0x1fffffff

0x8fffffff

0xa0ffffff

0x80000000

0xa0000000

0x0fffffff

0x0

0xb000ffff

0xb0000000

Examples:

M. Joos – Introduction to VMEbus 56

vmeconfig

• If called in the form “vmeconfig –a vmetab” it loads a user set-up into the
Universe chip. This typically happens automatically at boot time

• Called as “vmeconfig –i vmetab” it allows you to edit the configuration file
(vmetab)

• The configuration file is a binary. It cannot be modified with a text editor

• The (most important) user parameters are:
– Master and slave mapping

– Interrupts

– Byte swapping

– Arbitration and bus request modes

• In order to run vmeconfig you need a number of dynamic libraries from the
ATLAS TDAQ release. Use the command “ldd vmeconfig” to check

• Have a look at the on-line help in vmeconfig

M. Joos – Introduction to VMEbus 57

vmeconfig (2)
Example: How to set up a master mapping

Use option 4 to program a map decoder. vmeconfig will ask you to enter a number of

parameters:

Defining the PCI base address is the artistic part because you have to “guess” it. For an

educated “guess” use these guidelines:

-DRAM addresses grow from 0x0 upwards

-PCI devices are mapped by the kernel from 0xffffffff downwards

-Addresses in the range 0x50000000 – 0xbfffffff should be safe

-Never use addresses that are listed in /proc/iomem

When you are done upload the configuration into the Universe and save your changes. It is

recommended to check the new set-up with cctscope (function 2/2) for errors like address

overlaps

Enter number of map decoder <0..7> [0] :

Enable map decoder <0=no 1=yes> [1] :

Select VMEbus base address [0x00000000] :

Select PCI base address [0x90000000] :

Select the window size (bytes) [0x00010000] :

Select Write posting <0=no 1=yes> [0] :

Select address space

 <0=A16, 1=A24, 2=A32, 5=CR/CSR, 6=USER1, 7=USER2> [0] :

Select cycle type <0=User, 1=Supervisor> [0] :

Select cycle type <0=Data, 1=Program> [0] :

M. Joos – Introduction to VMEbus 58

The library of the vme_rcc package

• There are four major groups of functions:
– Single cycles

– Block transfers

– Interrupts

– Service functions (including bus errors)

• Presenting all functions here would take too long. The
program vme_rcc_test.cpp shows how the different
functions are to be used

• All functions return error codes in the format defined in the
rcc_error package

• There exists a C++ wrapper in a separate package
(RCDVme)

M. Joos – Introduction to VMEbus 59

A simple program doing single cycles

#include "rcc_error/rcc_error.h"

#include "vme_rcc.h"

int main(void)

{

 VME_MasterMap_t master_map;

 volatile u_int *lptr, ldata;

 u_int ret, vbase;

 int handle;

 ret = VME_Open();

 if (ret != VME_SUCCESS)

 {

 VME_ErrorPrint(ret);

 exit(-1);

 }

Let’s have a look at a very simple program executing a single read

cycle. For this purpose I assume that there is a VMEbus D32/A32

slave at address 0x02000000 with a total size of 4 Kb and a readable

register at offset 0x80

Never call a function

without checking for

errors!!!

Declare VMEbus

pointers volatile to

avoid problems

with code

optimization

M. Joos – Introduction to VMEbus 60

A simple program (2)
 master_map.vmebus_address = 0x02000000;

 master_map.window_size = 0x1000;

 master_map.address_modifier = VME_A32;

 master_map.options = 0;

 ret = VME_MasterMap(&master_map, &handle);

 if (ret != VME_SUCCESS)

 {

 VME_ErrorPrint(ret);

 exit(-1);

 }

 ret = VME_MasterMapVirtualAddress(handle, &vbase);

 if (ret != VME_SUCCESS)

 {

 VME_ErrorPrint(ret);

 exit(-1);

 }

 lptr = (u_int *)(vbase + 0x80);

 ldata = *lptr;

Create a master mapping.

Remember: Your “vmetab”

must support these

parameters

Get the virtual address for fast access.

Alternatively you could use the safe (but

slow) functions of the API

Cast the generic pointer to a

32-bit data type and add the

register offset

Execute the VMEbus cycle

M. Joos – Introduction to VMEbus 61

A simple program (3)
ret = VME_MasterUnmap(handle);

 if (ret != VME_SUCCESS)

 {

 VME_ErrorPrint(ret);

 exit(-1);

 }

 ret = VME_Close();

 if (ret != VME_SUCCESS)

 {

 VME_ErrorPrint(ret);

 exit(-1);

 }

}

Always clean up when

you’re done!

M. Joos – Introduction to VMEbus 62

Interrupts
• A VMEbus interrupt (identified by its unique 8-bit vector) can be converted by the

library to either a signal or a semaphore

• It is possible to link several interrupts (of the same type) to one signal or semaphore

• It is not possible to service both RORA and ROAK interrupts on the same interrupt

level

• If you are using RORA interrupts you have to re-enable the respective interrupt level

after each interrupt

• Remember: before you can use an interrupt level you have to enable it with vmeconfig

irq_list.list_of_items[i].vector = 0x77;

irq_list.list_of_items[i].level = 5;

irq_list.list_of_items[i].type = VME_INT_ROAK;

signum = 42;

ret = VME_InterruptLink(&irq_list, &int_handle);

ret = VME_InterruptWait(int_handle, timeout, &ir_info);

ret = VME_InterruptRegisterSignal(int_handle, signum);

ret = VME_InterruptUnlink(int_handle);

M. Joos – Introduction to VMEbus 63

Block transfers
• Block transfers can only be made to physically contiguous memory buffers (->

cmem_rcc). Using memory allocated by malloc() would technically be possible but
requires additional code in the driver to lock and chain the pages and there would
also be a performance penalty

• Supported modes are: A24D32, A32D32, A32D64 and “single cycle DMA”

• The VMEbus and PCI addresses have to be 8-byte aligned with respect to each other
(also for D32)

• The library supports chained DMA

• Block transfers are independent of the master map decoders

• The driver can manage multiple DMA requests from several processes. It is
therefore possible that a transfer does not start immediately

blist.list_of_items[0].vmebus_address = 0x10000000;

blist.list_of_items[0].system_iobus_address = 0x24000000; //PCI MEM space ->CMEM_RCC

blist.list_of_items[0].size_requested = 0x1000;

blist.list_of_items[0].control_word = VME_DMA_D32W; //Implies A32

time_out = 100;

ret = VME_BlockTransfer(&blist, time_out);

if (ret == VME_DMAERR) {

 printf("Status: %d\n", blist.list_of_items[0].status_word);

 printf("Bytes remaining: %d\n", blist.list_of_items[0].size_remaining);

}

M. Joos – Introduction to VMEbus 64

The “odd” stuff
• vme_rcc offers support for

– CR/CSR space read / write (only D8)

– User defined AM codes

– SYSFAIL interrupts

– Interrupt generation

– Supervisor / program AM codes

– Constant address DMA in single cycle mode

– Full bus error detection

• vme_rcc does not support
– Read-Modify-Write cycles

– Address only cycles

– ACFAIL interrupt

– A number of other exotic features of the Universe chip for which nobody
has requested support so far

M. Joos – Introduction to VMEbus 65

Service packages

• cmem_rcc
– Driver and library for the allocation of contiguous memory (e.g.

for block transfers) either via the get_free_pages() kernel function
or the BigPhysArea patch

– Used by some of the test programs in the vme_rcc package

– https://edms.cern.ch/document/336290/3

• io_rcc
– Driver and library for the access to PCI and PC I/O registers from

user code

– Used by some of the test programs in the vme_rcc package

• rcc_error
– A simple library for error reporting

https://edms.cern.ch/document/336290/3

