Standards for Modular Electronics

the past, the present and the future

Markus Joos CERN

- The past:
 - RIM
- The present:
 - PCI and PCIe
 - SHB Express
- The future:
 - Serial interconnects
 - · vxs
 - · ATCA
 - · 47CA

Why Modular Electronics?

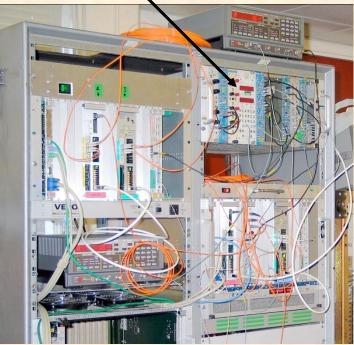
- As in programming a system becomes unmanageable if too much functionality is put into a single functional block
- Modularizing DAQ electronics helps in these respects:
 - Allows for the re-use of generic modules in different applications
 - Limiting the complexity of individual modules increases their reliability and maintainability
 - You can profit from 3rd party support for common modules
 - Makes it easier to achieve scaleable designs
 - Upgrades (for performance or functionality) are less difficult
 - Etc.

Why use Standards?

- Benefit from 3rd party products, services and support
- Competition gives you better prices and alternative suppliers
- Standards make it easier to define interfaces between sub-systems
- But not all standards are equally good:
 - Too old: poor performance, few suppliers, expensive
 - Too new: Interoperability issues, unclear long term support
 - Too exotic: Too few suppliers (sometimes just one)

NIM

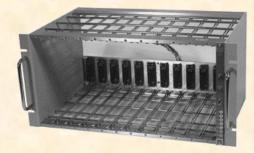
- Initially (1964): NIM = Nuclear Instrument Modules
 - But it was used outside of "nuclear science"
 - Therefore: NIM = National Instrument Modules
 - But is was used outside of the USA
 - Therefore: NIM stands for NIM

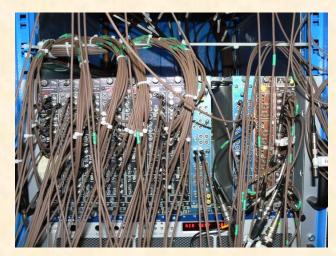

NIM modules (usually)

- Need no software
- Are not connected to a computer
- Are used to implement trigger logic These functions (any many others) are available
- Discriminators
- Coincidences
- Amplifiers
- Timers

. . . .

- Logic gates (and / or)
- Level converters
- HV power supplies

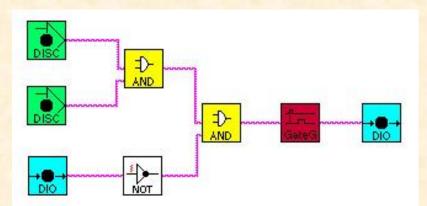

NIM crate


A small DAQ system ³

NIM basics

- 1st NIM standard: July 1964
 - 1st commercial module: November 1964
- Module dimensions: 34 x 221 x 246 mm
- NIM logic levels:
 - 0 = 0A (0V)
 - 1 = -12 to -32 (typical -16) mA at 50 Ω (-0.8V)
- NIM connector
 - 42 pins in total
 - 11 pins used for power (+/- 6, 12, 24V)
 - 2 logic pins (reset & gate)
 - pin 1 & 2 = +/- 3V (claimed by Wikipedia)
- 29 pins reserved since 1964
- 1983 NIM digital bus (IEEE 488 GPIB)
 - Rarely used

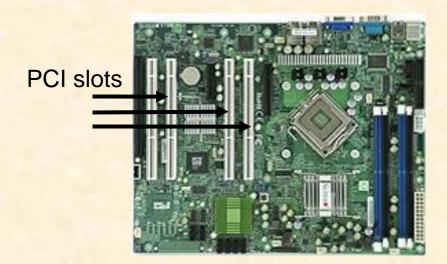
NIM connector


NIM – the next generation

NIM is still very alive Some examples

100 MS/s digitizer with optical read-out

General purpose NIM module with programmab le logic (LabView)

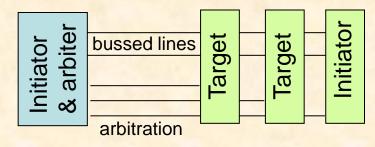

NIMbox

0.

0.

PCI

- First standardized in 1991
- Replaced the older ISA cards
- Initially intended for PC cards
 - Later spin-offs: CompactPCI, PXI, PMC ①
- Parallel PCI rapidly disappearing -> replaced by serial PCIe



PCI card

PC motherboard

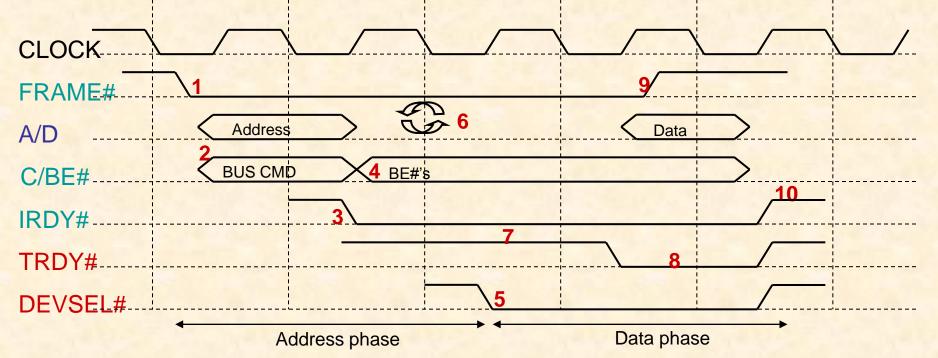
PCI basics

- Main features of the protocol
 - Synchronous timing
 - But wait cycles possible
 - Clock rates
 - Initially 33 MHz. Later: 66 MHz, (PCI-X: 100 and 133 MHz)
 - Bus width
 - Initially 32 bit. Later: 64 bit
 - Signaling voltage
 - Initially 5 V. Later 3.3 V (->slot keying)
 - Terminology
 - A data transfer takes place between an INITIATOR (master) and a TARGET (slave)
 - Bus topology
 - 1 to 8 (depending on clock rate) slots per bus
 - Busses can be connected to form a tree
 - Address and data as well as most protocol lines are shared by all devices; The lines used for arbitration are connected point-to-point; The routing of the interrupt request lines is more complicated...
 - A system can consist of several Initiators and Targets but only one Initiator can receive interrupts

PCI basics - 2

- Address spaces
 - Configuration space
 - Standardized registers for the dynamic configuration of the H/W (plug-and play)
 - I/O space
 - For device specific registers
 - MEM space
 - General purpose space for registers and memory
- Cycle types (encoded in the C/BE[3::0]# lines)
 - Single cycles
 - Read / write of all 3 address spaces
 - Bursts
 - MEM read / write (with special features for cache handling)
- (Typical) performance
 - Single cycle: 2 (3 for read) -> ~10 clock cycles
 - 33 MHz / 32 bit: 66 MB/s -> ~10 MB/s
 - 64 MHz / 64 bit: 264 MB/s -> ~40 MB/s
 - Bursts:
 - 33 MHz / 32 bit: Max. 132 MB/s
 - 64 MHz / 64 bit: Max. 528 MB/s
 - PCI-X @ 133 MHz: 1.06 GB/s
 - PCI-PCI bridges add additional delays

PCI devices under Linux


The command "Ispci" displays information about the PCI devices of a computer Show PCI tree: Ispci -t -v

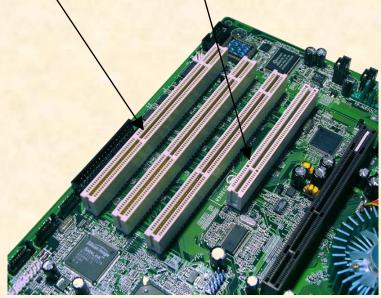
```
-[0000:00]-+-00.0 Intel Corporation E7520 Memory Controller Hub
       +-00.1 Intel Corporation E7525/E7520 Error Reporting Registers
       +-01.0 Intel Corporation E7520 DMA Controller
       +-02.0-[0000:01-03]--+-00.0-[0000:02]----03.0 CERN/ECP/EDU Unknown device 0144
                           +-00.1 Intel Corporation 6700/6702PXH I/OxAPIC Interrupt Controller A
                           +-00.2-[0000:03]---01.0 CERN/ECP/EDU Unknown device 0144
                           \-00.3 Intel Corporation 6700PXH I/OxAPIC Interrupt Controller B
       +-04.0-[0000:04]----00.0 Broadcom Corporation NetXtreme BCM5721 Gigabit Ethernet PCI Express
       +-05.0-[0000:05]----00.0 Broadcom Corporation NetXtreme BCM5721 Gigabit Ethernet PCI Express
       +-06.0-[0000:06-08]----00.0-[0000:07-08]--+-04.0 Broadcom Corporation NetXtreme BCM5714 Gigabit Ethernet
                                                +-04.1 Broadcom Corporation NetXtreme BCM5714 Gigabit Ethernet
                                                \-08.0-[0000:08]--+-06.0 Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet
                                                                  \-06.1 Broadcom Corporation NetXtreme BCM5704 Gigabit Ethernet
       +-07.0-[0000:09-0b]--+-00.0-[0000:0a]----02.0 CERN/ECP/EDU Unknown device 0144
                           +-00.1 Intel Corporation 6700/6702PXH I/OxAPIC Interrupt Controller A
                           +-00.2-[0000:0b]----01.0 CERN/ECP/EDU Unknown device 0144
                           \-00.3 Intel Corporation 6700PXH I/OxAPIC Interrupt Controller B
       +-1d.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #1
       +-1d.1 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #2
       +-1d.2 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #3
       +-1d.3 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB UHCI Controller #4
       +-1d.7 Intel Corporation 82801EB/ER (ICH5/ICH5R) USB2 EHCI Controller
       +-1e.0-[0000:0c]----01.0 ATI Technologies Inc Rage XL
       +-1f.0 Intel Corporation 82801EB/ER (ICH5/ICH5R) LPC Interface Bridge
       \-1f.3 Intel Corporation 82801EB/ER (ICH5/ICH5R) SMBus Controller
```

Show device details: lspci -v -s 02:03.0

02:03.0 Co-processor: CERN/ECP/EDU Unknown device 0144 (rev ac) Subsystem: Unknown device 2151:1087 Flags: bus master, 66MHz, medium devsel, latency 32, IRQ 209 Memory at d7200000 (32-bit, non-prefetchable) [size=512] I/O ports at 2000 [size=256] Memory at d8000000 (32-bit, non-prefetchable) [size=16M] Capabilities: <access denied>

PCI protocol Example: Single cycle read

- 1) Assertion of FRAME starts cycle
- Initiator puts address and command (cycle type) on the bus
- 3) The Initiator signals that it is ready to receive data
- The initiator uses the C/BE lines to define which bytes it wants to read
- 5) Target looks at the Address and drives DEVSEL if it was addressed. If no target drives DEVSEL after at most 6 clock the Initiator will abort the cycle
- 6) The ownership of the AD lines changes from Initiator to target (only for read cycles). This requires one clock cycle

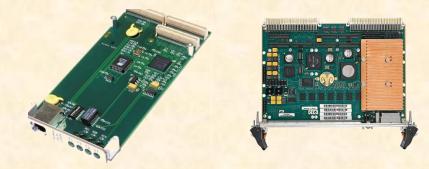

- 7) The Target does not yet drive TRDY (it may need time to prepare the data) but asks the Initiator to wait
- 8) The Target has the data ready on the AD lines. The Initiator fetches the data in the same clock cycle
- By de-asserting FRAME the Initiator tells to the Target that it does not want additional data after the next data word
- 10) The cycle is over and the protocol lines get released

10

Some examples of PCI H/W

32 bit slot with 5V key

64bit slot with 3.3V key



PC motherboard with PCI slots

6U CompactPCI chassis and card

PMC card and carrier (VMEbus)

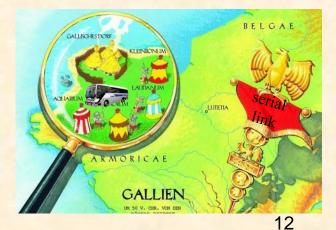
Parallel bus -> Serial link

Parallel Buses Are Dead! (RT magazine, 2006)

What is wrong about "parallel"?

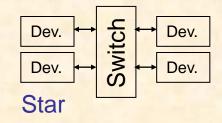
- You need lots of pins on the chips and wires on the PCBs
- The skew between lines limits the maximum speed

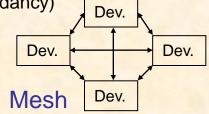
What is wrong about "bus"?


- Speed is a function of the length (impedance) of the lines
- Communication is limited to one master/slave pair at a time (no scalability)
- The handshake may slow down the maximum speed

All parallel buses are dead. All? No!

- There is lots of legacy equipment
- VMEbus is still used heavily (military / research)
- PCs still support parallel PCI (but this will change)

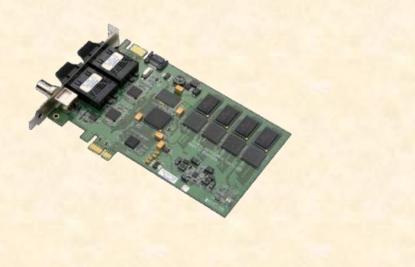

What next?

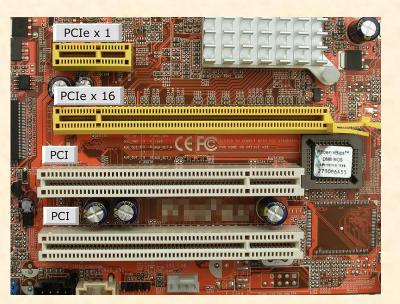

Switched serial interconnects

(Switched) serial links

- Standards (just the most important)
 - PCle
 - 1 / 10 GB Ethernet
 - Serial RapidIO
 - Infiniband
 - Serial ATA
 - FiberChannel
- Commonalities
 - Signal rate: 2.5 10 GHz
 - Packet switching
 - Topology
 - Star: Devices connect to a fabric switch
 - Dual Star: Devices connect to two fabric switches (for redundancy)
 - Mesh: All devices have direct links to all others
- Differences
 - Support for interrupts
 - Support for programmed I/O
 - Quality of service (guaranteed bandwidth)

Infiniband


- Developed by Compaq, IBM, Hewlett-Packard, Intel, Microsoft and Sun from 1999 onwards
- Characteristics
 - Bi-directional serial link
 - Aggregation of links (4x, 12x possible)
 - Link speed: 2.5, 5, 10 GHz
 - Special features
 - Data transfer performed without involvement of OS (latency < 2 μs)
 - Remote DMA (fetch data from the memory of a remote system)
 - Main field of application
 - Server and storage interconnect for high performance computing
 - Relevance for DAQ
 - Limited for a lack of DAQ products

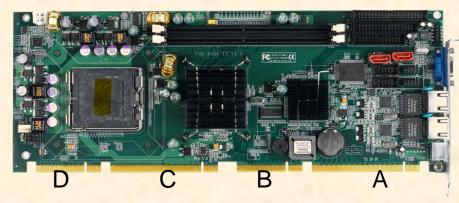

Serial Rapid I/O

- Developed by Mercury Computer Systems and Motorola from 1997 onwards
- Characteristics
 - Bi-directional serial link
 - Aggregation of links (2x, 4x, 8x, 16x possible)
 - Link speed: 1.25, 2.5, 3.125, 5, 6.25 GHz
 - Special features
 - Quality of Service (transfer requests can be prioritized)
 - Multicast
 - Main field of application
 - Chip/chip and board/board communication
 - Relevance for DAQ
 - Limited for a lack of DAQ products but some AMC/ATCA products

PCIe (aka PCI Express)

- Not a bus any more but a point-to-point link
- Data not transferred on parallel lines but on one or several serial lanes
 - Lane: One pair of LVDS lines per direction
 - Clock rate: 2.5 GHz (PCIe2.0: 5 GHz, PCIe 3.0: 8 GHz)
 - 8b/10b encoding (PCIe3.0: 128/130b encoding)
 - 250 MB/s (PCIe 1.0) raw transfer rate per lane
 - Devices can support up to 32 lanes
- Protocol at the link layer has nothing to do with protocol of parallel PCI
- Fully transparent at the S/W layer

PICMG 1.3 – The basic idea

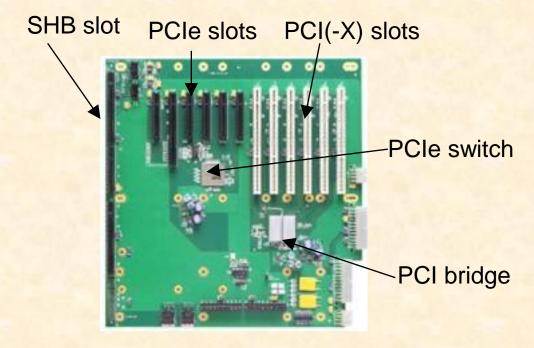

- A desk-top PC has at most 7 slots for PCI(e) cards
- PC motherboards are quickly getting obsolete
 - Let's design a standard that is more adapted for using PCI cards in an industrial domain
 - Modularize system by decupling computing core from PCI card backplane

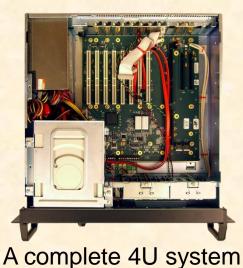
PICMG 1.3 – SHB Express

- SHB Express = System Host Board standard for PCIe
- Standardized in 2005
- Defined in the standard
 - SHB board mechanics (two board formats)
 - PCI interface between SHB and backplane
 - Additional I/O (SATA, USB, Ethernet, etc.) that may be routed to the backplane
 - Backplane design rules
- Systems consist of:
 - One SHB
 - One backplane
 - One or several PCIe, PCI-X or PCI cards

The SHB

- Two (A & B) or 4 (A, B, C & D) connectors
 - Connector A: PCIe
 - (1 x16) or (2 x8) or (1 x8 + 2 x4) or (4 x4)
 - Connector B: PCIe
 - (1 x4) or (4 x1)
 - Connector C:
 - Additional I/O
 - Connector D:
 - 1 32bit PCI(-X)


SHB – the backplanes


The backplane has to match the PCIe configuration of the SHB – x16 on connector A: graphics class – 2 x8 on Connector A: server class

Wodel earsber 6890-825 shown

Segmented backplane with 4 SHB and 12 PCIe slots for a 19" 4U chassis

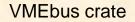
18

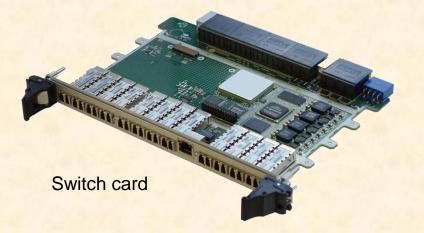
The next generation What new standards are available?

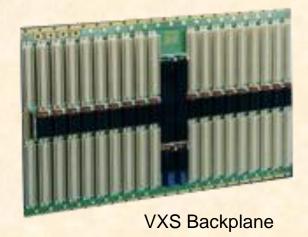
- VITA41: VXS
- PICMG 3.x: ATCA (Advanced Telecommunications Computing Architecture)
- PICMG MTCA.x: MicroTCA/µTCA
- PICMG AMC.x: Advanced Mezzanine Card (for ATCA and µTCA)

Not covered in this talk:

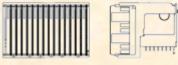
- VITA46: VPX
- PICMG 2.x: Compact PCI (cPCI)
- PICMG EXP.0: PCIe for cPCI
- PCIMG CPCI-S.0: CompactPCI serial
- PICMG ATCA300.0: ATCA for 300mm deep systems (no rear I/O)
- And many more...


PICMG:www.picmg.orgPCI-SIG:www.pcisig.comVITA:www.vita.com


VXS – The basic idea

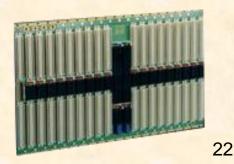

- VMEbus mechanics is no so bad:
 - Let's keep it
- There is a lot of legacy equipment:
 - Let's re-use it
- The data transfer bandwidth could be better:
 - Let's add an optional high-speed communication channel

VXS- Components


VXS (VITA 41, ~100 pages)

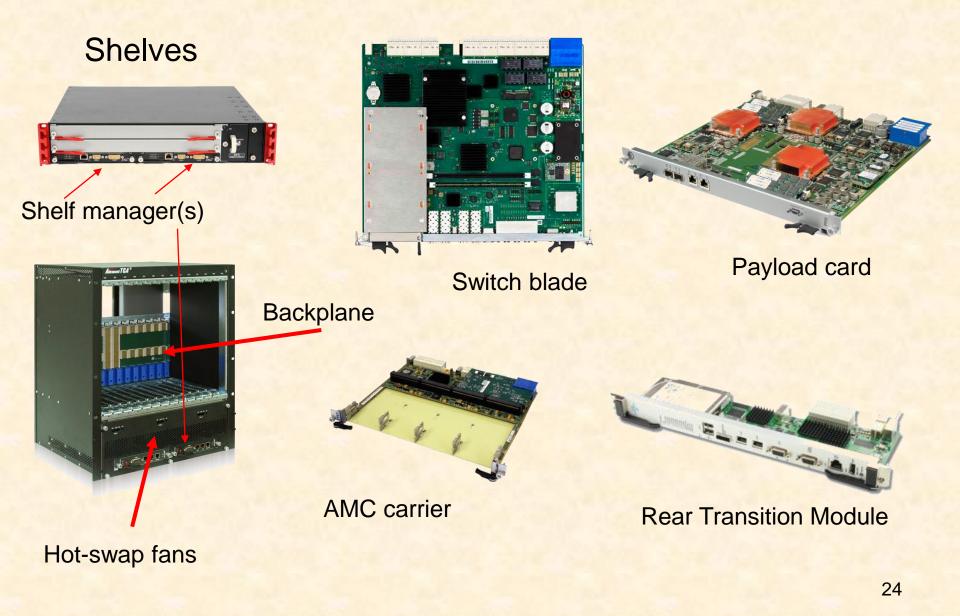
- Essentially 6U (but 9U not excluded) VMEbus with a new P0 connector
- Two types of cards
 - Payload
 - Switch (one card required, second for redundancy)
- Network topology: (dual) star
- Connectivity for payload cards
 - 16 differential pairs (10 GHz) defined by the standard (and routed to switch cards)
 - 31 reserved pins available on P0
- Sub-standards
 - 41.1: Infiniband
 - 41.2: Serial RapidIO
 - 41.3: IEEE Std 802.3 (1000 Mb/s Ethernet)
 - 41.4: PCle
- Hot Swap: According to VITA 1.4
- System management based on I²C / IPMI but only formulated as recommendation

WARNING: limited popularity in HEP applications


Payload card

VXS connector

Switch card

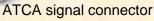

Backplane

Advanced TCA – the basic idea

• Telecom companies are using proprietary electronics:

- Let's design a standard for them from scratch
- It has to have all the features telecom companies need:
 - High availability (99.999%)
 - Redundancy at all levels
 - Very high data throughput
 - Sophisticated remote monitoring and control

Advanced TCA - Components



Advanced TCA (650 pages + IPMI)

- More of a system than a board standard
- Started in 2001 by ~100 companies
- One form factor
 - Front: 8U x 280 mm x 30.48 mm (14 slots per 19" crate)
 - Rear: 8U x 60 mm (5W)
- Supply voltage: -48 V (-> DC-DC conversion each on-board)
- Power limit: 200 W (400 W) per card
- Connectors
 - Zone 1: One connector for power & system management
 - Zone 2: One to five ZD connectors for data transfer
 - Zone 3: User defined connector for rear I/O
- Connectivity
 - Up to 200 differential pairs
 - 4 groups
 - 64 pairs for Base Interface (usually Eth., star topology)
 - 120 pairs for Fabric Interface (star or full mesh)
 - Ethernet, PCIe, Infiniband, serial RapidIO, StarFabric
 - 6 pairs for Clock Synchronization
 - 10 pairs for Update Channel
- System management based on IPMI, I²C and FRU data

S" KILINX

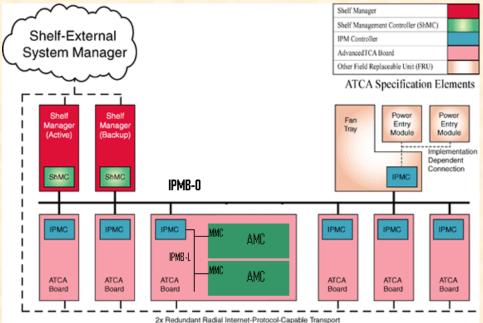
ATCA HA features

(applies also largely to µTCA)

Redundancy

- Power Supply modules
- Ventilators
- Shelf managers
- Switch blades

Electronic Keying


- Based on FRU information payload cards may be accepted / rejected in a given slot
 Hot swap
- Payload board will only receive (payload) power if the shelf manager can guaranty for the availability of the required resources (power, cooling, signal connections)

Monitoring

- Low level: IPMI on I²C
- High level: SNMP (Simple Network Management Protocol) and other protocols on top of TCP/IP
- System event logs

Cooling

Dynamically controlled fans and several alarm levels


Dedicated tree for control and monitoring

AMC – The basic idea

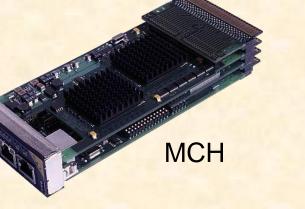
- ATCA blades are big. Small mezzanine modules could be helpful to modularize their functionality
- PMC/XMC mezzanines are not hot-swappable
 - Let's design a new type of mezzanine for ATCA

AMC

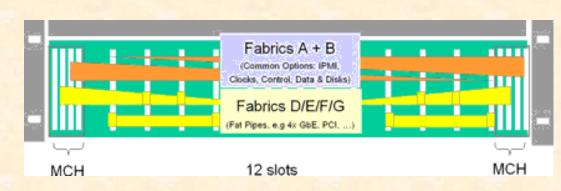
- Originally intended as hot-swappable mezzanine standard for ATCA but soon used as the basis for the µTCA standard
- 6 form factors:
 - 74 or 149 mm wide
 - 13, 18 or 28 mm high
 - 180 mm deep
- Power supply: 80W (max) on +12V (and 0.5W on 3.3V management power)
- Connector: 85 pin (single sided) or 170 pin (double sided) edge connector
- Connectivity
 - Up to 12.5 Gb/s
 - 20+20 LVDS signal pairs for data transfer (Eth, PCIe, SAS/SATA, RapidIO)
 - Clock interface, JTAG, I²C (IPMI)

µTCA – The basic idea

- AMC mezzanines are great but ATCA is a heavy standard and the H/W is expensive
 - Let's define a standard that allows for using AMCs directly in a shelf (i.e. Promote the AMC from "mezzanine" to "module")


µTCA - Components

Shelves


• A system standard based on the AMC, standardized in 2006

- Min. signaling speed: 3.125 GHz
- Connectivity:
 - 4 AMC LVDS pairs defined as "Common Options" (2 Eth. & 2 SAS ports) and connect to 1 or 2 MCH boards which provide the switching

μΤCΑ

- 8 AMC LVDS pairs defined as (extended) fat pipes (1 or 10 G Eth, PCIe, RapidI/O). Connection to MCH not standardized
- Remaining 8 LVDS pairs not defined (can be used for rear I/O (but rear I/O not foreseen in uTCA standard))
- System management based on IPMI / I²C
- Hot-swap support for PSU & cooling
- Redundant MCH (µTCA Controller Hub)
- The MCH connector supports up to 84 differential pairs. Therefore only 7 pairs per AMC (based on a 12-slot backplane) can be routed to the switch.

	Connector	AMC	Signal Conventions				MCH	
	Region	Port #					Fabric #	
	Common Options	G	AMC.2 1000Base-BX				A	
		1	AMC.2 1000Base-BX				2/A	
		2	AMC.3 SAS				B	
		3	AMC.3 SAS				2/B	
	Fat Pipes	4	AMC.1 x4 PCI-E	AMC.4 ×4 SRIO	AMC.2 1000Base-BX	AMC.2 10GBase-BX4	D	
		5			AMC.2 1000Base-BX		E	
		6			AMC.2 1000Base-BX		F	
		7			AMC.2 1000Base-BX		G	
	Extended Fat Pipes	8		AMC.4 ×4 SRIO	AMC.2 1000Base-BX	AMC.2 10GBase-BX4	2/D	
		9			AMC.2 1000Base-BX		2/E	
		10			AMC.2 1000Base-BX		2/F	
		11			AMC.2 1000Base-BX		2/G	

xTCA degrees of freedom (not necessarily a complete list)

• ATCA

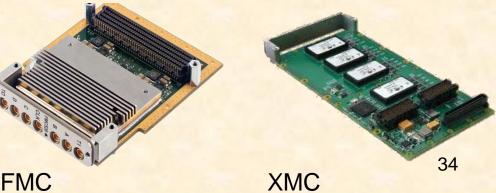
- Communication protocol(s) on the fabric channels
- Routing of the fabric channels on the backplane (network topology)
- Connection between front board and RTM
- Degree of redundancy
- Power supply at shelf level (230 VAC or -48 VDC)

• AMC

- Card height (13, 18 & 28 mm)
- Card width (74 & 149 mm)
- Communication protocols (currently 4 options)
- Number of pins on the connector (85 or 170)
- JTAG support
- uTCA
 - AMC height & width
 - Degree of redundancy (MCH, PSU, cooling)
 - Routing of the fabric channels on the backplane
 - JTAG support
 - Connectivity of MCH to backplane (1 to 4 tongues) and type of communication protocol on the fat pipes

xTCA issues

- The operation of an xTCA system requires a complex, standard compliant S/W infrastructure
 - Efforts to provide open source management S/W for xTCA: OpenSAF, SAForum
- As many features of the standard(s) are optional, products from different vendors may not be compatible
 - Efforts to insure interoperability of xTCA products: CP-TA, SCOPE alliance
- Many vendors seem to be in favour of "profiles" that limit the number of options given by the standards
 - ATCA profile for telecommunication
 - Proposal for a "physics profile" for xTCA
- The market does not yet provide lots of front end modules for physics DAQ
- There is little information available about the system performance (end to end H/W performance and S/W overhead) of the data transfer links


Mezzanines

A "module" is not necessarily monolithic. Often it carries mezzanines Use mezzanines to:

- Improve maintainability (mezzanines are easy to replace)
- Implement general purpose functions (e.g. controller, ADC, DC/DC)
- Some popular mezzanine standards
 - PMC (IEEE P1386.1)
 - Relatively old PCI based standards for VMEbus, CompactPCI, etc.
 - XMC (VITA 42)
 - PMC with additional high speed interface (e.g. PCIe)
 - FMC (VITA 57)
 - Small mezzanine for FPGA based designs

What is the right standard for me?

- This obviously depends on your requirements
 - Bandwidth & latency
 - Availability of commercial products (front end)
 - Existing infrastructure (S/W and H/W) and expertise in your experiment
 - Start and duration of the experiment
 - Scalability requirements
- Trends in HEP
 - LHC & experiments @ CERN: Still VMEbus & PCI based
 - CMS: Calorimeter trigger prototype in µTCA
 - ATLAS: ATCA proposed as VMEbus replacement, many R&D projects
 - LHCb: ATCA for upgrade program, several projects
 - LHC: µTCA for (non LHC) machine control under discussion
 - COMPASS @ CERN: VXS derivative
 - XFEL @ DESY: control system in µTCA