
Parallel //
programming

Gokhan Unel / UC Irvine
ISOTDAQ 2013

Thessaloniki, Greece

1

ON //ism

parallelism, parallel programming
to perform a number of tasks simultaneously
these can be calculations, or data transfer or…

In Unix, many daemons run in parallel
handling various tasks

Early hackers liked it! See XEROX CPV story in the
bonus section

2

Na59 example

Na59 DAQ software had 2
tasks:

task1: receive data, check its
consistency put in a buffer.
task2: read data from buffer, record
it on disk.

We achieved this degree of
parallelism with a fork

fork()

task2: to tape

task1: to buffer

raw data from
front end

formatted data
to disk

D
A

Q
 s

w

buffer

Note that task1 does
port IO and a bit of
calculation; task2 is

mostly disk IO. They do
not compete for the

exact same resources
3

who is who?

Each process has a process ID #.
Say we have a program with PID i.

After a fork() call,
there will be a second process with another PID j
which we call the child.
The first process, will also continue to exist and to
execute commands, we call it the mother.

4

why not to fork

fork() system call is the easiest way of
branching out to do 2 tasks concurrently. BUT

it creates a separate address space such that the
child process has an exact copy of all the memory
segments of the parent process.
This is “heavy” in terms of memory footprint
Forking is a “slow” operation.

5

http://en.wikipedia.org/wiki/Address_space
http://en.wikipedia.org/wiki/Address_space

the lightweight way

Threads
smallest “executable” task
small footprint, quick to launch
contrary to processes, threads share all resources

memory (program code and global data)
open file/socket descriptors
signal handlers and signal dispositions
working environment (current directory, user ID, etc.)

included in posix standards

Basic functions: start, stop, wait,...
6

why should I learn?

CPU frequency scaling seems to have been
saturated around 3GHz.
We now see an increase of #cores / cpu

We need to learn // programming to get the
maximum performance from any hardware
//programming also makes our sw more efficient.

We want to be able to share LOTS of data and
perform complicated tasks

real life examples from HEP experiments DAQ
7

starting a THREAD
you have the man pages to remember the usage

man pthread_create

good luck with the short description...
learn (suffer) once, put in a wrapper library, use your
library afterwards.
we will develop such a library during this lecture.

pthread_create

#include <pthread.h>

int pthread_create(pthread_t *restrict thread,
 const pthread_attr_t *restrict attr,
 void *(*start_routine)(void *),
 void *restrict arg);

8

A working example .

Our wrapper function:
launch_thread

send : function to execute,
argument to the function
receive : status, tid

includes

simple definitions

simple function to print the argument

9

A working example ..

compile and link
with -lpthread

ins & outs

create thread

return TID

10

demo
1

take away from ex1

How to run multiple tasks in parallel.
How to hide complex function calls in to a
simple wrapper library.
How to compile and execute a threaded
program in Unix.

11

get the ID

Each thread has a unique ID#: TID
a thread’s TID is returned at the creation.
a thread’s own TID is obtained with pthread_self()

TIDs are of pthread_t which can be cast to a long
unsigned int. In a thread, one can do

printf("This is TID: %lu:\n",(unsigned long)pthread_self());
could be useful in debugging...

12

tools
ps: process list, exists in all
Unix variants

options to list processes including
thread IDs, check the man page
for your *nix.
linux, try: ps -eLf

pstree: linux specific
top: sort processes, exists in all
Unix variants

Linux: H to turn on/off display of
Threads

13

TID

terminate a THREAD
if the executed function exits or finishes, the
thread exits as well.
pthread_exit terminates the current thread.
pthread_cancel nicely terminates any thread, it
requires a TID to work on.

useful functions, we better add to our library

14

pthread_cancel

demo
2a

take away from ex2a

Don’t assume that you really killed a thread
even if the system call returns success.

it will terminate the function whenever it is
convenient.

We have very fast computers, few
microseconds means long time.

you will not have exact control if you do not wait for
the actual termination.

15

wait for exit: Join

The pthread_join() function suspends execution
of the calling thread until the target thread exits,

unless the target thread has already terminated.

16

pthread_join

Launch Threads 1 & 2

TID2 tells TID1 to exit, and starts to wait

TID1
TID2

TID1 to exit, and starts to wait

TID2 resumes and
finishes its task

to wait or NOt ?

If we don’t use the wait function, the “dead” thread
will be still active for a while:

If not used, see that “orange” printed after “Killed.”
If used, there is no such printout.

17

addition to main

demo
2b

take away from ex2b

18

+ - Real life example

with wait
function

Precision in task
executions

•Becomes priority vs all
other commands
•Time consuming

ATM machine
controls

without
wait

function

Allows other
functions to
continue in

parallel

No accurate timing in
execution

User interaction
(e.g. display

help)

if Titanic had an autopilot

Say we had a multi-threaded program responsible
from piloting the ship

thread 1: weather conditions
thread 2: engine status
thread 3: helm control
thread 4: external sensors, cameras etc…

tid4 notices the iceberg
how to inform the rest of the working tasks ?

all threads should stop what they do, and act according
to the new information.

19

let them know: signal
Life is not synchronous ! But
Asynchronous.

Things can happen at any time, a good
software has to take into account such events.

In computing, we use signals to mark
such events.

for example, we could pause and continue a
thread at our will.

20

pthread_kill

PS: Don’t let _kill fool you, it
simply means send a signal.

hanDling the signals
Our library should be able to

receive a signal
do something about it

21

executed function should call
the signal handler

Poor man’s suspend.
We will revisit this.

testing

modify the main to add the
new function

22

no more orange !

demo
3

take away from ex3

Singals are very useful to work in async mode.
but we can send 1 signal to 1 TID at a time
there is a way for “broadcasting”, we’ll see it later.

23

always use protection

problem: as the resources are shared, a variable can be
modified by multiple threads

solution: use MUTual EXclusion as protection.
a MUTEX is like a safe box

24

run1

run2

run3

create aND LOCK
There are 2 calls to create a mutex

pthread_mutexattr_init (pthread_mutexattr_t *attr);
pthread_mutex_init (pthread_mutex_t *mutex, const pthread_mutexattr_t *attr)

There are 2 calls to lock /unlock a mutex
pthread_mutex_lock (pthread_mutex_t *mutex); // blocking
pthread_mutex_unlock (pthread_mutex_t *mutex);

25

locking call, if the mutex is free lock will be
rapidly achieved, if not, the function call will
wait until the mutex becomes available.

increase the common variable for GREEN
and decrease for orange, except use
different sleep values….

unlock the mutex, free it
for the next usage.

output

although orange is much much
faster, we see same number of
GREEN and orange calls.

This is nice, and expected: lock call waits for the
MUTEX to be available.

one should destroy a mutex
when it is not needed

pthread_mutex_destroy(*mutex)
26

demo
5b

take away from ex5

Use a MUTEX when you need
to limit access to a particular data / counter etc...
to make a thread wait something to happen without
polling

polling is bad,
waste of cpu cycles

if you sleep between polls no give cpu, you will loose reaction time

27

condition variables .
These provide another way for
synchronization

mutexes control access to data
condition variables control actual value of data

Why we need condition variables ?
these provide a blocking function, at low cpu usage
otherwise, one would have to poll continuously

Note
a condition variable also needs a mutex

28

condition variables ..

two new variable types
pthread_cond_t th_cond;
pthread_condattr_t th_cond_attr;

Five function calls
pthread_condattr_init (*cond_attr);
pthread_cond_init(*cond, *cond_attr);
pthread_cond_broadcast (*cond);
pthread_cond_wait(*cond, *mutex);
pthread_cond_destroy(*cond);

29

condition variable
and its attributes

initialize the attributes

initialize the variable

publish the variable

blocking wait call

remove when done

library improvements
Lets use the condition variables and blocking
calls to implement a suspend-resume function

each thread has to have its own mutex & cond_var.
 we need to monitor the #of active threads in launch and exit

thread_launch: initialize cond_vars & mutexes
the signal action: incorporate cond_vars & mutexes
need resume_thread function
waitfor_thread: incorporate cond_vars & mutexes

30

31

new: keep track of the # of active threads

new: init a mutex / thread

new: init a cond_var / thread

32

chan
ges

33

new: clean the cond_vars and mutexes

new: resume function

34

new: keep track of the # of active threads

modify the testing part to
suspend-resume

demo
6

Outlook
multi-processing vs multi-threading

amount of shared resources (& available memory) justifies launching multi threads.
limitations of multi threading / processing

Amdahl's Law: the speedup of a program due to parallelization can be no larger
than the inverse of the portion of the program that is immutably sequential.

For example, if 50% of your program is not parallelizable, then you can only expect a maximum speedup of 2x

processor affinity
a program or a thread can be locked to a particular CPU (or core). This will
override the OS’s scheduling scheme. The calls are OS dependent. Linux: taskset &
sched_setaffinity for processes and pthread_setaffinity_np &
pthread_attr_setaffinity_np, for *BSD check your manual.

vector processing features in modern CPUs
vector processing: single operation on multiple data OR multiple operation on
multiple data. example: scale a 1x100 vector by ! . Knowing your hardware would
allow writing more efficient software.

35

homework
Google about the following high level tools for // programming
Boost
TBB
PROOF

Make the last demo work on your computer w/ 3 colors.
make a real library with a .c and .h file + test suite + readme
challenge: could you make a resume_all_threads function?

References
http://linux.about.com/library/cmd/blcmdl2_sched_setscheduler.htm
Programming with POSIX Threads: David R. Butenhof
https://computing.llnl.gov/tutorials/pthreads36

http://linux.about.com/library/cmd/blcmdl2_sched_setscheduler.htm
http://linux.about.com/library/cmd/blcmdl2_sched_setscheduler.htm
http://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.amazon.com%2FProgramming-POSIX-Threads-David-Butenhof%2Fdp%2F0201633922&ei=8XD2UNbSIcv74QSVo4H4CA&usg=AFQjCNFoW8jyTj0Q6L_O9RlyTSfi4zcZ-Q&sig2=qifPszfDf77sKE6FrPbvyQ&bvm=bv.41018144,d.bGE
http://www.google.ch/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.amazon.com%2FProgramming-POSIX-Threads-David-Butenhof%2Fdp%2F0201633922&ei=8XD2UNbSIcv74QSVo4H4CA&usg=AFQjCNFoW8jyTj0Q6L_O9RlyTSfi4zcZ-Q&sig2=qifPszfDf77sKE6FrPbvyQ&bvm=bv.41018144,d.bGE
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads

BONUS
slides

37

On scheduling

For different processes
Cooperative multitasking

Processes voluntarily cede time to one another

Preemptive multitasking - for realtime applications (your smart phone!)
Operating system guarantees that each process gets a “slice” of time for execution and handling
of external events (I/O) such as interrupts

For different threads
SCHED_FIFO - first in first out

runs until either it is blocked by an I/O request, it is preempted by a higher priority process, or it
calls sched_yield.

SCHED_RR - round robin
same as above, except that each process is only allowed to run for a maximum time quantum.

SCHED_OTHER (linux, not in bsd)
Linux default, for processes without any realtime requirements.

38

fork() example
#include <stdio.h> // printf, stderr, fprintf
#include <sys/types.h> // pid_t
#include <unistd.h> // _exit, fork
#include <stdlib.h> // exit
#include <errno.h> // errno

int main(void)
{
 pid_t pid;
 pid = fork();

 if (pid == -1) {
 fprintf(stderr, "can't fork, error %d\n",
errno);
 exit(EXIT_FAILURE);
 }

 if (pid == 0) {
 /* Child process:
 * If fork() returns 0, it is the child
process.
 */
 int j;
 for (j = 0; j < 15; j++) {
 printf("child: %d\n", j);
 sleep(1);
 }
 _exit(0); /* Note that we do not use
exit() */

 } // end of child
 else
 {

 /* If fork() returns a positive number, we
are in the parent process
 * (the fork return value is the PID of the
newly created child process)
 */
 int i;
 for (i = 0; i < 10; i++)
 {
 printf("parent: %d\n", i);
 sleep(1);
 }
 exit(0);
 }// end of parent

 return 0;
}

39

circa 1974

One fine day, the system operator on the
main CP-V software development system
in El Segundo was surprised by a number
of unusual phenomena. These included
the following:

Tape drives would rewind and dismount
their tapes in the middle of a job.
Disk drives would seek back and forth so
rapidly that they would attempt to walk
across the floor (see walking drives).
The card-punch output device would
occasionally start up of itself and punch a
‘lace card’ (card with all positions punched).
These would usually jam in the punch.
The console would print snide and insulting
messages from Robin Hood to Friar Tuck, or
vice versa.

Naturally, the operator called in the
operating-system developers. They found
the bandit ghost jobs running, and killed
them... and were once again surprised.
When Robin Hood was gunned, the
following sequence of events took place:

!X id1

id1: Friar Tuck... I am under attack! Pray save me!
id1: Off (aborted)

id2: Fear not, friend Robin! I shall rout the Sheriff
 of Nottingham's men!

id1: Thank you, my good fellow!

Each ghost-job would detect the fact that
the other had been killed, and would start
a new copy of the recently slain program
within a few milliseconds. The only way
to kill both ghosts was to kill them
simultaneously (very difficult) or to
deliberately crash the system.

40

http://www.catb.org/jargon/html/W/walking-drives.html
http://www.catb.org/jargon/html/W/walking-drives.html

