Higgs Bosons and b Quarks

October, 2007 SLAC ATLAS Forum Sally Dawson

8

Laura Reina, Chris Jackson, Doreen Wackeroth

Plan:

- Lightning review of SM Higgs physics
 - Discussion of $gg \rightarrow bbh vs bg \rightarrow bh$
 - Emphasize understanding of theoretical assumptions
- MSSM results for $bg \rightarrow bh$
 - Status of current (Summer, 2007) limits
- Effects of squark/gluino loops on bg→bh
 - Why are these effects interesting?

Precision measurements limit Higgs Mass

- LEP EWWG (July, 2007):
 - $M_t = 170.9 \pm 1.8 \text{ GeV}$
 - $M_{h} = 76^{+36}$ -24 GeV
 - M_h < 144 GeV (one-sided 95% cl)
 - M_h < 182 GeV (Precision measurements plus direct search limit)

Best fit in region excluded from direct searches

Producing the Higgs at the Tevatron

NNLO or NLO rates

 $M_{h}/2 < \mu < M_{h}/4$

Limits understood from Branching Ratios

SM Production Mechanisms at LHC

SM Higgs, CMS 2007

Includes radiative corrections

Higgs + b's aren't discovery mode for SM Higgs

$pp \rightarrow b\overline{b}h$

- Why is bbh interesting?
 - Direct measurement of b quark Yukawa coupling (enhanced in MSSM at large tan β)
 - Higgs discovery mode in SUSY models at large tan β
 - Theoretical questions about b quark parton distribution functions (PDFs)
- Why do NLO corrections?
 - Improved theoretical reliability
 - Often find large numerical results

Which b mass?

- $\sigma(bbh) \approx (m_b/v)^2$
- Pole mass (from Υ decays): m_b=4.62 GeV
- MS bar mass:

$$\overline{m}_{b}(\mu) = m_{b} \left[1 - \frac{\alpha_{s}}{3\pi} \left(4 + 3 \ln \left\{ \frac{\mu^{2}}{m_{b}^{2}} \right\} \right) \right]$$

Makes a big numerical difference which b mass you use

Use MS Renormalization

• Compute the $O(\alpha_s)$ corrections:

$$\Gamma_1(h \to b\bar{b}) = \frac{3M_h}{8\pi} \left(\frac{m_b}{v}\right)^2 \left\{ 1 + \frac{2\alpha_s}{3\pi} \left[\frac{9}{2} - 3\log\left(\frac{M_h^2}{m_b^2}\right) \right] \right\}$$

• Define the running b mass

$$\overline{m}_{b}(\mu) = m_{b} \left[1 - \frac{\alpha_{s}}{3\pi} \left(4 + 3 \ln \left\{ \frac{\mu^{2}}{m_{b}^{2}} \right\} \right) \right]$$

• Large logarithms absorbed to 2-loops

$$\Gamma(h \to b\overline{b}) = \Gamma_0 \left\{ 1 + 5.67 \frac{\alpha_s(M_h)}{\pi} + \left(36 - 1.4n_{lf} \right) \frac{\alpha_s(M_h)^2}{\pi^2} \right\} \qquad \Gamma_0(h \to b\overline{b}) = \frac{3M_h}{8\pi} \left(\frac{\overline{m}_b(M_h)}{\nu} \right)^2$$

11

Scale and Scheme Dependence at NLO

•NLO calculations improve scale dependence

•Scale dependence enters in running of $\alpha_s(\mu)$ and PDFs, $g(\mu)$, as well as $\alpha_s{}^3\log(\mu)$ contributions

•Formally, scale dependence is $O(\alpha_s{}^4)$ but may be numerically large

What is the dominant process for Higgs + b Production?

Answer depends on whether you tag outgoing b's

≻ Is there double counting when including b initial state?

The b quark as a parton

Absorb collinear logs in b quark distributions

$$b(x,\mu) = \frac{\alpha_s}{2\pi} \ln\left(\frac{\mu^2}{m_b^2}\right) \int_x^1 \frac{dz}{z} P_{bg}\left(\frac{x}{z}\right) g(z,\mu)$$

- Altarelli-Parisi evolution of PDFs sums $\alpha_s^{n} \ln^n(\mu^2/m_b^2)$

− b quark PDF $\approx \alpha_{s} \ln(\mu^{2}/m_{b}^{2})$ relative to gluon PDF

Two Schemes for PDFs:

- 4 flavor number scheme (also called fixed flavor number scheme)
 - No b quarks in initial state
 - Lowest order process involving Higgs and b's is $gg \rightarrow b\overline{b}h$
- 5 flavor number scheme (also called variable flavor number scheme)
 - Define b quark PDFs (absorbs large logarithms)
 - Higgs produced with no p_T at lowest order (bb \rightarrow h)
 - Higgs p_{T} generated at higher orders in expansion

 $\sim 10^{-10} (\alpha_{\rm s} \ln(M_{\rm h}^2/m_{\rm b}^2))^2 \approx .4$

 $\alpha_{\rm s}^2 \approx .01$

Re-ordering of Perturbation Theory

- 0 b tag process in 5FNS:
 - LO: $b\overline{b} \rightarrow h = O(\alpha_s^2 \Lambda_b^2)$
 - NLO: Virtual+real corrections $O(\alpha_s^3 \Lambda_b^2)$
 - NLO: bg \rightarrow bh $O(\alpha_s^2 \Lambda_b)$, correction of $O(1/\Lambda_b)$ to tree level
 - NNLO: gg $\rightarrow \overline{bbh} O(\alpha_s^2)$, correction of $O(1/\Lambda_b^2)$ to tree level
- 1 b tag process in 5FNS:
 - LO process is bg \rightarrow bh: Tree level, $O(\alpha_s^2 \Lambda_b)$
 - NLO includes new subprocess: $gg \rightarrow b\overline{b}h$, O(1/ Λ_b) correction to LO

 $\Lambda_b = log(M_h^2/m_b^2)$

Inclusive Cross Section for $b\overline{b} \rightarrow h$: 0 b tags

Campbell et al, hep-ph/0405302

Harlander & Kilgore, hep-ph/0304035

What if only 1 b is tagged?

19

What about distributions? Compare 4 and 5 Flavor Number PDF Schemes

Higgs plus single b at LHC:

Good Theoretical Understanding of Uncertainties

Higgs in the MSSM

 \succ MSSM has 2 Higgs doublets: H_d and H_u

Physical CP-Even Higgs bosons

$$\begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} = \begin{pmatrix} c_{\alpha} & -s_{\alpha} \\ s_{\alpha} & c_{\alpha} \end{pmatrix} \begin{pmatrix} h_{u}^{0} \\ h_{d}^{0} \end{pmatrix}$$

>Pseudoscalar, A⁰, and two charged Higgs, H[±]

Higgs Couplings very different in MSSM

Large tan β Changes Relative Importance of Production Modes

 $\tan\beta \ge 7$, bb production mode dominates

Kilgore

Production of SUSY Higgs Bosons

- > For large tan β , dominant production mechanism is with b's
- > bbh can be 10x's SM Higgs rate in SUSY for large tan β

25

 $pp, p\overline{p} \rightarrow bbH$

Enhancement in MSSM

Note log scale!

Can observe heavy MSSM scalar Higgs boson

Single b tag

MSSM with $M_h=M_H=120$ GeV, tan $\beta=40$

Single b tag

NLO

MSSM with $M_h=M_H=120$ GeV, tan $\beta=40$

Higgs Decays also affected at large tan β

• SM: Higgs branching rates to bb and $\tau^+\tau^-$ turn off as rate to W⁺W⁻ turns on (M_h > 160 GeV)

•MSSM: At large tan β , rates to bb and $\tau^+\tau^-$ stay large

MSSM limits from bg \rightarrow bh (1 fb⁻¹)

LP, 2007

30 fb⁻¹ CMS expects to get to tan $\beta \sim 15$ through bh; $h \rightarrow \tau^+ \tau$, $h \rightarrow bb$

A Reliable Prediction

- We have $bg \rightarrow bh$ at QCD NLO
 - PDF/scale/scheme uncertainties $\sim 10-20\%$
- Are squark/gluino contributions relevant?
 - Important for $bb \rightarrow H$, A at LHC
 - For some parameters as large as -50% effects
 - Squark/gluino effects almost completely described by Improved Born Approximation

Dittmaier et al, hep-ph/0611353

Need SQCD for Reliable Predictions

Squark/gluino loops important for large tan β and small M_{SUSY}

33

 $gb \rightarrow b\phi$

Can $gb \rightarrow b\phi$ +jet be useful?

More soon.....

Conclusions

- In the MSSM Higgs and b quarks go together at large tan β
- Higgs production with b's is dominant mechanism for tan $\beta > 7$
- Theoretical understanding of b PDFs: compatible answers in 4FNS and 5FNS for PDFs
- SUSY QCD corrections can be the same size as QCD corrections

