
Alexey Badalov, Daniel Hugo Campora Perez, Alexander Zvyagin, Niko Neufeld, Xavier Vilasis Cardona
alexey.badalov@cern.ch, dcampora@cern.ch

La Salle — Ramon Llull University, CERN

A GPU OFFLOADING MECHANISM FOR LHCb

The LHCb so�ware infrastructure is built around a flexible, 

extensible, modular framework named Gaudi. This frame-

work is used in the context of the Online and Offline so�ware, 

for all the event processing applica�ons of LHCb, including the 

data taking so�ware, the full event reconstruc�on chain and 

analysis so�ware.

The hardware market has changed since the �me of Gaudi's 

concep�on at the turn of the century. There is now readily 

available hardware for massively parallel computa�on, such 

as consumer graphics processing units, NVIDIA Tesla cards, 

and Intel Xeon/Phi coprocessors. Enabling the use of these in 

the Gaudi framework has the poten�al to speed up and 

enhance Physics selec�on in HEP experiments.

Background

The Gaudi framework was con-

ceived for a sequen�al processing 

paradigm, where all individual 

events of event reconstruc�on fol-

low a process chain with depend-

encies along the computa�on 

stages.

The execu�on chain of an event in 

LHCb incurs data and control flow 

dependencies. Some algorithms 

require execu�on of others, 

crea�ng RAW (Read A�er Write) 

dependencies in the TES (Tran-

sient Event Store). Since the nature 

of the problem is to discard unin-

teres�ng events, the chain may 

terminate, thus also crea�ng con-

trol flow dependencies. 

An algorithm running on Gaudi can 

choose to take advantage of mul�-

ple processor cores independently 

of the framework, but it can pro-

cess only a single piece of data at a 

�me. It is also possible to run sev-

eral instances of the framework in 

parallel. For LHCb, this solu�on has 

been shown to work well up to 32 

cores with diminishing returns. It is 

expected to scale up only slightly 

farther. Given the small size of indi-

vidual data sets at LHCb (about 60 

KB raw event size), an individual 

algorithm running on Gaudi cannot 

properly take advantage of mas-

sively parallel so�ware.

Gaudi framework

CPU

Algorithm

Transient
Event Store

load

Transient
Event Store

save

Algorithm

Algorithm

GPU

Algorithm
Offloading

server
batching

Offloading
server

distribu�on

Transient
Event Store

load

Offloading
service
recieve

Transient
Event Store

save

Offloading
service

send

We address Gaudi’s limita�on by crea�ng a 

server process �ed to the massively parallel 

computa�on unit. This process receives data 

from mul�ple Gaudi instances, processes them 

in large batches, and then distributes the 

results back to senders. The instances can be 

located on the same node as the server process 

or on different ones.

Gaudi instances communicate with the server 

through a Gaudi service. Each instance submits 

data in a format required by the GPU algo-

rithm, and then waits for the result.

Our preliminary tests of this system on VELO 

reconstruc�on on the GPU show promising 

results, albeit with addi�onal overhead that 

has to be amor�sed over mul�ple events.

Our test requires receive and send stages, in 

which the AoS (Array of Structures) data from 

Offloading mechanism

Preliminary results

A GPU Offloading engine has 

been developed that allows exe-

cu�on of code on a coprocessor. A 

working example outperforms the 

sequen�al algorithm in execu�on 

�me, and a GPU Scheduler com-

bined with Gaudi-Mul�Threaded 

is a good prospect to reduce the 

transport �me overhead.

TES is converted to a coprocessor-

friendly SoA format and back. The con-

verted data is sent to the GPU kernel.

laSalle
Universitat Ramon Llull


	Page 1

