

# Computing Facilities



## **Agile Infrastructure Monitoring**

pedro.andrade@cern.ch CERN IT/CF

> CHEP 2013 14<sup>th</sup> October 2013







### Introduction



#### **Motivation**

- Several independent monitoring activities in CERN IT
- Combination of data from different groups necessary
- Understanding performance became more important
- Move to a virtualised dynamic infrastructure

## Challenges

- Implement a shared architecture and common tool-chain
- Delivered under a common collaborative effort

# History

#### 2012

- Monitoring team with contributions from few IT groups
- Architecture design and definition
- Several initial prototypes and studies

### 2013

- Core monitoring team (in IT/CF since March 2013)
- Close collaboration with other IT groups
- Implementation and deployment of solutions













- Integrate data from multiple producers
- Support legacy producers





- Scalable transport to collect monitoring and operations data
- Easy integration with providers and consumers







- Long term archival of collected data
- Offline processing of collected data
- Allow future data replay to other tools







- Limited data retention
- Real-time queries
- Easy to deploy and horizontal scalable







- Dynamic creation of dashboards
- Tailored for global and application specific views
- User friendly





- Quick and reliable delivery of alarms
- Delivery of notifications via multiple channels



# **Technologies**



## Adopt open source tools

- For each architecture block look outside for solutions
- Large adoption and strong community support
- Fast to adopt, test, and deliver (and easily replaceable)

## Integrate with new CERN infrastructure

Al project, OpenStack, Puppet, Roger, etc.

Focus on simple adoption (e.g. puppet modules)

# **Technologies**





### Flume



## Distributed service for collecting large amounts of data

- Robust and fault tolerant
- Horizontally scalable, multi-tier deployment
- Many ready to be used input and output plugins
  - Avro, Thrift, JMS, Syslog, HTTP, ES, HDFS, Custom, ...
- Java based, Apache license

- Needs tuning to correctly size flume tiers
- Available plugins saved a lot of time





# Hadoop HDFS



# Distributed framework for large data sets processing Distributed filesystem designed for commodity HW

- Suitable for applications with large data sets
- Cluster provided by other IT group (DSS)
- Data stored by cluster (might be revised)
- Daily jobs to aggregate data by month

- Large analytics potential to explore
- Reliable external long term repository



## ElasticSearch



## Distributed RESTful search and analytics engine

- Real time acquisition, data is indexed in real time
- Automatically balanced shards and replicas
- Schema free, document oriented (JSON)
- Based on Lucene (full-featured IR library)

- Easy to deploy and manage
- Robust and fast API
- Powerful query language (DSL)



### Kibana



## Visualize time-stamped data from ElasticSearch

- Designed to analyse log, perfectly fits time stamped data
- No code, point & click to build your own dashboard
- Built with AngularJS (from google)

- Easy to install and configure
- Very cool user interface
- Fits many use cases (e.g. text, metrics)
- Still limited feature set, but active growing community





#### General Notifications Infrastructure

- Based on ActiveMQ messaging broker
- Same monitoring producers (e.g. lemon)
- Multiple consumers
  - Snow consumer for ticket creation
  - Dashboard consumer for web application
  - No contact for node heartbeat checking



- Efficient, direct ticket routing
- Flexible, easy to add more consumers (e.g. SMS)



# Deployment



#### **Producers**

- From all puppet-based data centre nodes
- Central monitoring
  - Computing Facilities (lemon, syslog)
- Application monitoring
  - OS & Infrastructure Services (openstack)
  - Platform & Engineering Services (batch lsf)
  - Security Team (netlog, snoopy)
  - Databases Services (web apps)
  - Data and Storage Services (castor logs)
  - Support for Distributed Computing (wlcg monitoring)



# Deployment

#### Flume

10 aggregator nodes, 5 nodes to HDFS + 5 nodes to ES

#### **HDFS**

~500 TB cluster, 1.8 TB collected since mid July 2013

#### ElasticSearch

- 1 master node, 1 search node, 8 data nodes
- 90 days TTL, 10 shards/index, 2 replicas/shards
- Running ElasticSearch Kibana plugin



# Deployment











# Summary



Several interesting technologies tested and deployed

Full workflow deployed for concrete monitoring needs

Verified by different monitoring producers

Improve monitoring tools under a common effort



Thank you!!

**Questions??** 

<u>itmon-team@cern.ch</u>
<a href="mailto:http://cern.ch/itmon">http://cern.ch/itmon</a>

### **Backup Slides**

### Flume





### Sources

- Avro, Thrift, JMS, Syslog, HTTP, Custom, ...

#### Sinks

- Avro, Thrift, ES, Hadoop HDFS, Custom, ...

