
Running jobs in the 
Vacuum

Andrew McNab
University of Manchester

Mario Ubeda Garcia 
& Federico Stagni

CERN



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 2

Overview

● The Grid vs The Cloud vs The Vacuum

– 3 models

– Vacuum definition

● The Vac implementation

– UDP protocol

– Target shares

– Shutdown messages

● Production use within LHCb

– Contextualization

– Production tests

● Summary



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 3

The Grid

“Push becomes pull”
CREAM-CE &
batch queues

Matcher &
Task Queue

Director
(pilot factory)

WMS
Broker

R
equests

for real jobs

Central
agents &
services

Pilot job. Runs
JobAgent to

fetch from TQ

Pilot
jobs

User and 
production

jobs

Grid
Site

Originally a push 
model using 

brokers, but VOs 
switched to a pull 

model by using pilot 
jobs and central task 

queue.

(These diagrams 
use LHCb 

terminology but 
other experiments 

have equivalent 
components.)



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 4

The Cloud

Matcher &
Task Queue

Director
(VM factory)

R
equests

for real jobs

Central
agents &
services

VM. Runs
JobAgent to

fetch from TQ

User and 
production

jobs

Cloud Site
Again uses Push to 

start Virtual Machines, 
contextualize them 
and run JobAgents 

which set up the Pull 
mechanism used to 

fetch real jobs.

Infrastructure-as-a-Service
(IaaS)

In LHCb, use the 
same TQ as for Grid 
and direct DIRAC 
execution of jobs.



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 5

“The Vacuum”

Matcher &
Task Queue

R
equests

for real jobs

Central
agents &
services

VM. Runs
JobAgent to

fetch from TQ

User and 
production

jobs

Vacuum
site

Instead of being 
created by VOs, 
the Virtual 
Machines appear 
spontaneously 
“out of the 
vacuum” at sites. 

Hypervisors/hosts 
can run VMs for 

particular VOs
depending on 

work available 
and target shares 

for each VO.

As with the other models, the 
JobAgent runs and requests real 
jobs from the Matcher and normal 
Task Queue.

Infrastructure-as-a-Client
(IaaC)



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 6

Vacuum Model

● For the experiments, VMs appear by “spontaneous production in the 
vacuum”

– Like virtual particles in the physical vacuum: they appear, potentially interact, and 
then disappear

● From the conference paper: 

– “The Vacuum model can be defined as a scenario in which virtual 
machines are created and contextualized for experiments by the site 
itself. The contexualization procedures are supplied in advance by the 
experiments and launch clients within the virtual machines to obtain work 
from the experiments' central queue of tasks.”

● At many sites, 90% of the work is done by 2 or 3 experiments

– This justifies effort to set them up at the site (comparable to site-info.def etc)

– In return, the site is no longer dependent on all the CREAM/batch or Cloud 
machinery for these jobs



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 7

Vac implementation

● On each physical node, Vac VM factory daemon runs to create and 
apply contextualization to transient VMs

● Multiple VM flavours (“VM types”) are supported, ~1 per experiment

– Could also include a PBS worker node in a VM, a PROOF worker VM etc

● Each site or Vac “space” is composed of independent factory nodes

– All using the same /etc/vac.conf, /etc/vac-targetshares.conf etc

● Factories communicate with each other via UDP

– Type of VM to start in a free slot based on what else is running and target shares

– So no headnode central point of failure; robust against losing individual nodes

● So far supports CernVM image and ISO (AMI) contextualization

– VO supplies user_data, prolog.sh and epilog.sh; Vac makes the ISO image

– Vac also makes and NFS exports HEPiX machinefeatures etc directories to the 
VM, including shutdowntime and shutdown_command



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 8

Vac UDP protocol

● Each factory has a list of all the factories in the same Vac space

– (May offer multicast as an alternative in the future...)

● Sends UDP packet containing a JSON-encoded Python dictionary:

– {"cookie": "179e6....cd3a5", "method": "status", 

 "space": "vac01.tier2.hep.manchester.ac.uk"}

● One UDP reply for each VM assigned to a factory:

– State (shutdown / starting / running), VM type etc

– Outcomes of last VM instance run here for each VM type

● Use cookies to avoid external denial of service, since UDP

● Can also be used to query nodes (vac command ≈ PBS qstat)

● Use UDP port 995 (Roman Numerals: V=5, M=1000. 995=1000-5 !)



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 9

“Back off”

● To avoid overloading Matcher/TaskQueue, Vac implements “back off” 

● If a VM finishes with “no work” / “banned” / “site misconfigured” 
outcomes then it counts as an abort

– If no outcome given, then if a VM finishes after less than fizzle_seconds 
(600sec?) then it counts as an abort

● For a VM type (~experiment), if an abort has happened on any 
factory in the last backoff_seconds (600 sec?), then no more VMs of 
that type will be started

● After that, if an abort happened in the last backoff_seconds + 
fizzle_seconds and any new VMs have run for less than 
fizzle_seconds, then no more VMs of that type will be started

– ie try to run one or two test VMs to see if ok now 

● If backoff_seconds + fizzle_seconds have passed without more 
aborts, then can start VMs again as fast as slots become available



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 10

Target shares

● Vac avoids the phrase “fair shares”

● No history recorded: just a targetshares list in the configuration

– Each time a new VM must be created, the VM type with the least running VMs, 
weighted by the shares, is tried

– The back-off mechanism is there to stop trying VM types which have “recently” 
failed to get any work and failed to stay running

● This approach is very simple, and means the factory nodes can 
decide themselves what to do

– Avoids a central management daemon which would be a single point of failure

● But these target shares are instantaneous 

– They are fair, in that if all experiments submit lots of jobs, the site shares out the 
capacity according to the stated shares

– But they are unfair in that quiet periods aren't credited and carried forward 



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 11

Long-term target shares

● The intention is that sites address this by updating the targetshares 
list and pushing it out to the factory nodes

– Can use puppet or whatever they use for configurations elsewhere

– Separate /etc/vac-targetshares.conf can be used for convenience

● The plan is to provide a tool to use the local APEL database to 
calculate targetshares to achieve long term target shares figures 

– For example: “We've not run any jobs from Expt. X this quarter so far. Set X's 
instantaneous target share so if some jobs do arrive from X, they will all be run.”

● Rather like an offline version of MAUI with a long time constant

● The big advantage is that if this tool fails to run, the system still 
carries on running jobs with the current share values and doing useful 
work while you fix it.

● Smaller sites can also just do this by hand every week or so (as some 
do with short term MAUI shares...)



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 12

Controlling VM lifetimes
● Vac strategy is to use the HEPiX machinefeatures directory

– NFS exported from factory node into VM, so easy to populate and to update

●  So far we set shutdowntime when the VM is created

– Always kill the VM at that time if still running

– Will add other VM/job length values in response to new task force effort

● We set /etc/machinefeatures/shutdown_command

– Allows the VM to shut itself down. This may not be appropriate for clouds, but is 
extremely useful for IaaC systems, like Vac and BOINC

● Vac's default shutdown wrapper saves any command line arguments 
as the shutdown message

– These help the site see why VMs are terminating

– This is a polite thing the VM can do for the site's benefit

– Uses Vac's writeable NFS directory /etc/machineoutputs



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 13

Shutdown message codes

● Passed as arguments to shutdown_command:

– 100 Shutdown as requested by the VM's host/hypervisor

– 200 Intended work completed ok

– 300 No more work available from task queue

– 400 Site/host/VM is currently banned/disabled from receiving more work

– 500 Problem detected with environment/VM provided by the site

– 600 Error related to job agent or application within VM

● As with HTTP codes, room to insert more numbers for finer grained 
information in the future

● Vac uses this information programmatically, but useful to admins too

● More details and rationale:

– https://www.gridpp.ac.uk/wiki/HEPiX_shutdown_command



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 14

Interface with LHCb JobAgent

● Contextualization procedure causes JobAgent to be started in VM

● Vac expects VMs to shutdown if they can't find any work to do

● Use the shutdown_command protocol for site/factory to tell the VM 
how to shut itself down

– vac-shutdown-vm is a wrapper around “sudo shutdown -h now”

● Use shutdown code + message saying why it has shutdown (eg “300 
Nothing to do” if no more work in TQ)

– vac-shutdown-vm writes this to /etc/machineoutputs/shutdown_message

– this directory is NFS-exported from factory into VM; Vac examines it afterwards

● TimeLeft.py is being extended to read HEPiX shutdowntime

– Vac creates shutdowntime using maximum allowed lifetime of a VM of this type

– Can also be used to ask VM to stop with, say, 24 hours warning



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 15

Vac testing at sites
● During the summer ran routine LHCb production Monte Carlo:

– Jobs run at Manchester, Lancaster and Imperial Vac sites

– 3300 LHCb production jobs run across these sites with Vac

● Aim is to make Vac sites look like “normal” WLCG/EGI sites wherever 
possible 

– uk.ac.gridpp.vac service endpoint type registered in GOCDB

● Accounting data successfully published to site APEL database

– vacd writes PBS and BLAHP format accounting files which work with the  
existing APEL PBS parser

– Next test with EMI3 site APEL and publish into global APEL database

● Once accounting is demonstrated, next steps are to try larger 
deployments with more than a handful of machines per site

– Need accounting done so UK sites don't lose out in work-based funding



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 16

Summary

● Vacuum is an alternative to Grid and Cloud models

– Quite complementary to Clouds + VMs with the same VMs on both

● Vac is an implementation of this model

– VM factory on each physical machine, communicating via UDP

– See http://www.gridpp.ac.uk/vac/ for RPMs, documentation etc

● Tested at multiple sites; successfully ran production LHCb jobs

● Next step is to try with larger deployments

http://www.gridpp.ac.uk/vac/


Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 17

Extra slides



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 18

OpenStack cloud site architecture



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 19

Graceful mechanisms allow job “masonry”...

Maximum length job, starting just before advance notice given

        Max length

Max length job

Max length job

Max length job

Max length

Short job

Shorter job

Short job Short job

Wasted
resources

Machine shutdown timeStart of advance notice



Jobs in the Vacuum -   Andrew.McNab@cern.ch   -   CHEP2013, Amsterdam 20

Documentation...


