

μ CernVM: Slashing the Cost of Building and Deploying Virtual Machines

J Blomer, D Berzano, P Buncic, I Charalampidis, G Ganis, G Lestaris, R Meusel, V Nicolaou

jblomer@cern.ch

CERN PH-SFT CHEP 2013, Amsterdam

The Cern Virtual Machine

- Used on laptops, clouds, volunteers' computers (LHC@Home 2.0)
- Uniform and portable environment for physics data processing
- "Just enough operating system" derived from application dependencies

From CernVM 2 to CernVM 3

CernVM 2.X series

- Versatile image supports all hypervisors supports all LHC experiments various roles: desktop, batch, ...
- Strongly versioned components
 Single version number defines VM
 (by Conary package manager)
- Scientific Linux 5 based
- Significant effort to build, test, deploy images

Goals for CernVM 3

- Update base platform Scientific Linux 6, RPM support for cloud-init
- Instant feedback during appliance development: minutes instead of hours
- 3 Instant instantiation of virtual machines: seconds instead of minutes

Idea: CernVM-FS can provide operating system on demand

Building blocks of CernVM 3

Twofold system: μ CernVM boot loader + OS delivered by CernVM-FS

Building blocks of CernVM 3

Twofold system: μ CernVM boot loader + OS delivered by CernVM-FS

⇒ Drastic reduction in size

From "just enough operating system" to "operating system on demand" $400 \, \text{MB}$ image (compressed) $\mapsto 12 \, \text{MB}$ image $+ 100 \, \text{MB}$ cache

1 Part I: μ CernVM Boot Loader

2 Part II: Operating System on CernVM-FS

CERN

μ CernVM Boot Process

CernVM Kernel: 3.10 long-term kernel (2 year support) Features: KSM, zRam, THP, cgroups, X32-ABI

Extra modules: AUFS, VMware drivers, VBox drivers, OpenAFS

"Virtualization-friendly", minimal set of device drivers:

100 modules / 8 MB as compared to 2 000 modules / 120 MB in SL6

- 1 Execute SYSLINUX boot loader
- 2 Decompress and load Linux kernel
- 3 Decompress init ramdisk, execute customized /init
 - a) Start networking
 - b) Contextualize (supports EC2, OpenStack, OpenNebula, vSphere)
 - c) [Partition and] [format and] mount scratch space
 - d) Mount CernVM-FS
 - e) Mount AUFS root file system stack
 - f) Change root file system and start operating system


```
000
                                CernVM 3 [Running]
 Welcome to micro-CernUM
 Beta release 1.14-1.cernvm.x86 64
[INF] Loading predefined modules... check
[INF] Starting networking... check
[INF] Getting time from ptbtime1.ptb.de... check
[INF] Contextualizing UM... (none)
[INF] Partitioning /dev/sda... check
[INF] Formatting /dev/sda1... check
[INF] Mounting root filesystem... check
[INF] Starting CernVM File System... connected to cernvm-devel.cern.ch
[INF] Pinning core file set... check
[INF] Posting kernel modules... check
[INF] Booting CERN Virtual Machine 3.0.0.0
mount: mount point /proc/bus/usb does not exist
               Welcome to Scientific Linux
Starting udev: _
```


μ CernVM Root File System Stack

CernVM-FS features targeted to loading the OS:

- Closing all read-write file descriptors in order to unravel file system stack on shutdown
- Redirect syslog messages
- In-flight change of DNS server
- GID / UID mappings
- ⇒ This file system stack requires special support from a read-only Fuse branch since it is started before the operating system.

1 Part I: μCernVM Boot Loader

2 Part II: Operating System on CernVM-FS

Scientific Linux on CernVM-FS

General idea: Install packages with yum into a CernVM-FS chroot jail
Problem: Typical package repositories are not designed
to preserve an environment

The CernVM 3 build process ensures strong versioning on three levels

- 1 cernvm-system meta RPM fully versioned dependency closure
- 2 Named branches in the CernVM-FS repository
- Versioned snapshots provided by CernVM-FS allow the very same image to instantiate any cernvm-system version helpful for long-term data preservation

Scientific Linux on CernVM-FS

General idea: Install packages with yum into a CernVM-FS chroot jail

Problem: Typical package repositories are not designed

to preserve an environment

The CernVM 3 build process ensures strong versioning on three levels

- ① cernvm-system meta RPM fully versioned dependency closure
- 2 Named branches in the CernVM-FS repository
- Versioned snapshots provided by CernVM-FS allow the very same image to instantiate any cernvm-system version helpful for long-term data preservation

Build Process: Scientific Linux on CernVM-FS

Maintenance of the repository **should not** become a Linux distributor's job **But**: should be reproducible and well-documented

Idea: automatically generate a fully versioned, closed package list from a "shopping list" of unversioned packages

Virtual Machine Life Cycle

Avoids: Image Building Solves: Image Distribution

Options for updating: stay, diverge, rebase

Rebase high-level perspective

- 1 On first boot, CernVM selects and pins newest available version
- 2 Automatic update notifications
- Applying updates requires a reboot Most security critical updates require a reboot anyway

μCernVM Bootloader

- boot partition read-only, updates dropped on ephemeral storage
- 2 phase boot: start old kernel and ramdisk kexec into updated version

CernVM-FS OS Repository

- Mount updated CernVM-FS snapshot
- Conflict resolution wrt. local changes
 - 1 keep local configuration
 - map user/group ids
 - merge rpm database

Options for updating: stay, diverge, rebase

Rebase high-level perspective:

- 1 On first boot, CernVM selects and pins newest available version
- 2 Automatic update notifications
- 3 Applying updates requires a reboot Most security critical updates require a reboot anyway

μ CernVM Bootloader

- boot partition read-only, updates dropped on ephemeral storage
- 2 phase boot: start old kernel and ramdisk, kexec into updated version

CernVM-FS OS Repository

- Mount updated CernVM-FS snapshot
- Conflict resolution wrt. local changes
 - 1 keep local configuration
 - 2 map user/group ids
 - 3 merge rpm database

Example

Instantiating a Virtual Machine in CernVM Online

Web browser plugin developed by loannis Charalampidis for http://crowdcrafting.org/app/cernvm

Example

Instantiating a Virtual Machine in CernVM Online

Instantiating a Virtual Machine in CernVM Online

Summary and Outlook

- 1 CernVM 3 releases are created in few minutes
- 2 A single virtual machine image of only 12 MB can instantiate any CernVM 3 version ever released

The reality check

- Build CernVM 3 components
- PROOF and HTCondor clusters
- ATLAS, ALICE event viewers
- CMS, LHCb reconstruction

Next steps

- Systematic testing!
- Use WLCG infrastructure for CernVM-FS OS repository

We are happy for feedback!

Please find beta releases and build system sources under:

http://cernvm.cern.ch/portal/ucernvm https://github.com/cernvm

More about CernVM Online

G Lestaris et al.: CernVM Online and Cloud Gateway: a uniform

interface for CernVM contextualization and deployment http://chep2013.org/contrib/185

More about PROOF as a Service

D Berzano et al.: PROOF as a Service on the Cloud: a Virtual

Analysis Facility based on the CernVM ecosystem

http://chep2013.org/contrib/185

3 Backup Slides

Hypervisor Support Status

Hypervisor / Cloud Controller	Status
VirtualBox	√
VMware	\checkmark
KVM	\checkmark
Xen	\checkmark
Microsoft HyperV	?
Parallels	4 4
Openstack	√
OpenNebula	√3
Amazon EC2	\checkmark^1
Google Compute Engine	4 2

¹ Only tested with ephemeral storage, not with EBS backed instances

² Waiting for custom kernel support

³ Only amiconfig contextualization

⁴ Unclear license of the guest additions

Build Process: Package Dependency ILP

Normalized (Integer) Linear Program:

$$\text{Minimize } (c_1 \cdots c_n) \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \text{subject to } \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \leq \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$

Here: every available (package, version) is mapped to a $x_i \in \{0, 1\}$.

Cost vector: newer versions are cheaper than older versions.

(Obviously: less packages cheaper than more packages.)

Dependencies:

Package x_a requires x_b or x_c : $x_b + x_c - x_a \ge 0$. Packages x_a and x_b conflict: $x_a + x_b \le 1$. (...)

Figures

 \approx 17 000 available packages (n=17000), 500 packages on "shopping list" \approx 160 000 inequalities (m=160000), solving time <10 s (glpk) Meta RPM: \approx 1 000 fully versioned packages, dependency closure

Idea: Mancinelli, Boender, di Cosmo, Vouillon, Durak (2006)