
𝜇CernVM: Slashing the Cost of Building and
Deploying Virtual Machines

J Blomer, D Berzano, P Buncic, I Charalampidis, G Ganis,
G Lestaris, R Meusel, V Nicolaou

jblomer@cern.ch

CERN PH-SFT
CHEP 2013, Amsterdam

1 / 16

jblomer@cern.ch


The Cern Virtual Machine

CernVM 2.X

rAA System Libraries &
Tools

CernVM-FS

Operating System Kernel

Contextualization

User Data (EC2, Openstack)

HEPIX

Fuse

HTTP Cache
Hierarchy

CernVM Online CernVM Co-Pilot

• Used on laptops, clouds, volunteers’ computers (LHC@Home 2.0)
• Uniform and portable environment for physics data processing
• “Just enough operating system” derived from application dependencies

2 / 16



From CernVM 2 to CernVM 3

CernVM 2.X series
+ Versatile image

supports all hypervisors
supports all LHC experiments
various roles: desktop, batch, . . .

+ Strongly versioned components
Single version number defines VM
(by Conary package manager)

! Scientific Linux 5 based
! Significant effort to

build, test, deploy images

Goals for CernVM 3
1 Update base platform

Scientific Linux 6, RPM
support for cloud-init

2 Instant feedback during
appliance development:
minutes instead of hours

3 Instant instantiation
of virtual machines:
seconds instead of minutes

Idea: CernVM-FS can provide operating system on demand

3 / 16



Building blocks of CernVM 3

CernVM 3

initrd: CernVM-FS + 𝜇Contextualization

AUFS R/W Overlay

OS + Extras

Kernel𝜇
C
er

nV
M

Sc
ra

tc
h

H
D

User Data (EC2, OpenStack, . . . )

FuseAUFS

CernVM Online CernVM Co-Pilot

Twofold system: 𝜇CernVM boot loader + OS delivered by CernVM-FS

4 / 16



Building blocks of CernVM 3

CernVM 3

initrd: CernVM-FS + 𝜇Contextualization

AUFS R/W Overlay

OS + Extras

Kernel𝜇
C
er

nV
M

Sc
ra

tc
h

H
D

User Data (EC2, OpenStack, . . . )

FuseAUFS

CernVM Online CernVM Co-Pilot

12MB

100MB

Twofold system: 𝜇CernVM boot loader + OS delivered by CernVM-FS

⇒ Drastic reduction in size
From “just enough operating system” to “operating system on demand”
400MB image (compressed) ↦→ 12 MB image + 100 MB cache

4 / 16



1 Part I: 𝜇CernVM Boot Loader

2 Part II: Operating System on CernVM-FS

5 / 16



𝜇CernVM Boot Process

CernVM Kernel: 3.10 long-term kernel (2 year support)
Features: KSM, zRam, THP, cgroups, X32-ABI
Extra modules: AUFS, VMware drivers, VBox drivers, OpenAFS

“Virtualization-friendly” , minimal set of device drivers:
100 modules / 8MB as compared to 2 000 modules / 120 MB in SL6

1 Execute SYSLINUX boot loader

2 Decompress and load Linux kernel

3 Decompress init ramdisk, execute customized /init

a) Start networking
b) Contextualize (supports EC2, OpenStack, OpenNebula, vSphere)
c) [Partition and] [format and] mount scratch space
d) Mount CernVM-FS
e) Mount AUFS root file system stack
f) Change root file system and start operating system

6 / 16



Booting 𝜇CernVM

7 / 16



𝜇CernVM Root File System Stack

CernVM-FS Read-Only

Read/Write Scratch Area

AUFS
(Union File System)

Read/Write
Interface

CernVM-FS features targeted to loading the OS:
• Closing all read-write file descriptors in order to

unravel file system stack on shutdown
• Redirect syslog messages
• In-flight change of DNS server
• GID / UID mappings
⇒ This file system stack requires special support from a read-only Fuse

branch since it is started before the operating system.
8 / 16



1 Part I: 𝜇CernVM Boot Loader

2 Part II: Operating System on CernVM-FS

9 / 16



Scientific Linux on CernVM-FS

General idea: Install packages with yum into a CernVM-FS chroot jail
Problem: Typical package repositories are not designed

to preserve an environment

The CernVM 3 build process ensures strong versioning on three levels

1 cernvm-system meta RPM
fully versioned dependency closure

2 Named branches in the CernVM-FS repository

3 Versioned snapshots provided by CernVM-FS
allow the very same image to instantiate any cernvm-system version
helpful for long-term data preservation

production

3.
0.

64
.0

testing

3.
1.

32
.0

development

3.
2.

1.
0

cernvm-system

10 / 16



Scientific Linux on CernVM-FS

General idea: Install packages with yum into a CernVM-FS chroot jail
Problem: Typical package repositories are not designed

to preserve an environment

The CernVM 3 build process ensures strong versioning on three levels

1 cernvm-system meta RPM
fully versioned dependency closure

2 Named branches in the CernVM-FS repository

3 Versioned snapshots provided by CernVM-FS
allow the very same image to instantiate any cernvm-system version
helpful for long-term data preservation

production

3.
0.

64
.0

security fix

3.
0.

64
.1

testing

3.
1.

32
.0

development

3.
2.

1.
0

cernvm-system

10 / 16



Build Process: Scientific Linux on CernVM-FS
Maintenance of the repository should not become a Linux distributor’s job
But: should be reproducible and well-documented

Idea: automatically generate a fully versioned, closed package list
from a “shopping list” of unversioned packages

Scientific Linux EPEL CernVM Extras (≈ 50)

· · ·

!""#
$%&"'#
(#

Formulate dependencies as
Integer Linear Program

Package
Archive

Dependency
Closure

yum install
on CernVM-FS

11 / 16



Virtual Machine Life Cycle

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula ) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

12 / 16



𝜇CernVM Life Cycle

2. Prepare
Repositories

3. Build 4. Test

1. Plan

6. Instantiate

9. Terminate 8. Monitor

7. Contextualize

5. Endorse

10. Feedback

Development
Cycle

Deployment
Cycle

User InfrastructureCernVM Infrastructure

11. Retire

Figure 1: Visual representation of the two sub-cycles that form the Virtual Machine Lifecycle.

2. The Virtual Machine Lifecycle
A virtual machine passes through various different stages throughout it’s life. These stages are
just a logical separation of the fundamental procedures that are common for the maintenance of
every virtual machine (VM). They are usually independent and are associated with a specific set
of tools. For instance, the life of the VM begins when the specifications of the build process are
prepared and stored in a reference database, and it is terminated after it has completed the job it
was instantiated for. In order to find an optimal solution it is important to identify those stages,
the tools associated with them and their dependencies. This way the appropriate tools can be
grouped with the stages and form a stand-alone and independently-maintained component.

In the CernVM Project we pass through all stages of the every time we release a new version.
In our case, after a VM instance completes it’s cycle, user feedback is processed and a new
development cycle begins. Because of this cycling pattern, we decided to use the term lifecycle to
refer to the life of CernVM. This lifecycle can be split into two logical sub-cycles: the development
cycle and the deployment cycle (Figure 1).

The development cycle begins with the definition of the specifications and finishes with the
production of the distributable VM media. This cycle is performed entirely inside the CernVM
infrastructure.

The deployment cycle begins with the instantiation of the released image and finishes with the
termination of the instance. This cycle is performed outside the CernVM infrastructure, such as
a public or private cloud infrastructure (e.g. Amazon or OpenNebula ) or an individual computer
(e.g. desktop hypervisors or a small computer farm). In all these cases, the OS needs to contact
the CernVM infrastructure in order to obtain contextualization information and software packages
from our repository.

The two cycles are connected via two intermediate stages: The release of the produced image
to the public and the feedback that is collected from the users and triggers a new development
cycle. The two stages are in the borders that split the private infrastructure and the public.

As was mentioned before, each stage is independent and is typically supported by a number of
specialized tools.

Plan: This is a stage on which the desired functionality of the VM is planned. The resulting

Avoids: Image Building Solves: Image Distribution

12 / 16



Updates

Options for updating: stay, diverge, rebase

Rebase high-level perspective:

1 On first boot, CernVM selects and pins newest available version

2 Automatic update notifications

3 Applying updates requires a reboot
Most security critical updates require a reboot anyway

𝜇CernVM Bootloader
• boot partition read-only,

updates dropped
on ephemeral storage

• 2 phase boot:
start old kernel and ramdisk,
kexec into updated version

CernVM-FS OS Repository
• Mount updated CernVM-FS

snapshot

• Conflict resolution wrt.
local changes

1 keep local configuration
2 map user/group ids
3 merge rpm database

13 / 16



Updates

Options for updating: stay, diverge, rebase

Rebase high-level perspective:

1 On first boot, CernVM selects and pins newest available version

2 Automatic update notifications

3 Applying updates requires a reboot
Most security critical updates require a reboot anyway

𝜇CernVM Bootloader
• boot partition read-only,

updates dropped
on ephemeral storage

• 2 phase boot:
start old kernel and ramdisk,
kexec into updated version

CernVM-FS OS Repository
• Mount updated CernVM-FS

snapshot

• Conflict resolution wrt.
local changes

1 keep local configuration
2 map user/group ids
3 merge rpm database

13 / 16



Example
Instantiating a Virtual Machine in CernVM Online

Web browser plugin developed by Ioannis Charalampidis for
http://crowdcrafting.org/app/cernvm

14 / 16

http://crowdcrafting.org/app/cernvm


Example
Instantiating a Virtual Machine in CernVM Online

14 / 16



Example
Instantiating a Virtual Machine in CernVM Online

14 / 16



Summary and Outlook

1 CernVM 3 releases are created in few minutes

2 A single virtual machine image of only 12 MB can
instantiate any CernVM 3 version ever released

The reality check
• Build CernVM 3 components

• PROOF and HTCondor clusters

• ATLAS, ALICE event viewers

• CMS, LHCb reconstruction

Next steps
• Systematic testing!

• Use WLCG infrastructure
for CernVM-FS OS repository

We are happy for feedback!

Please find beta releases and build system sources under:
http://cernvm.cern.ch/portal/ucernvm

https://github.com/cernvm

15 / 16

http://cernvm.cern.ch/portal/ucernvm
https://github.com/cernvm


Related Contributions

More about CernVM Online
G Lestaris et al.: CernVM Online and Cloud Gateway: a uniform
interface for CernVM contextualization and deployment
http://chep2013.org/contrib/185

More about PROOF as a Service
D Berzano et al.: PROOF as a Service on the Cloud: a Virtual
Analysis Facility based on the CernVM ecosystem
http://chep2013.org/contrib/185

16 / 16

http://chep2013.org/contrib/185
http://chep2013.org/contrib/185


3 Backup Slides

17 / 16



Hypervisor Support Status

Hypervisor / Cloud Controller Status

VirtualBox X
VMware X
KVM X
Xen X
Microsoft HyperV ?
Parallels E4

Openstack X
OpenNebula X3

Amazon EC2 X1

Google Compute Engine E2

1 Only tested with ephemeral storage, not with EBS backed instances
2 Waiting for custom kernel support
3 Only amiconfig contextualization
4 Unclear license of the guest additions

18 / 16



Build Process: Package Dependency ILP
Normalized (Integer) Linear Program:

Minimize (c1 · · · cn) ·

⎛⎜⎝x1
...
xn

⎞⎟⎠ subject to

⎛⎜⎝a11 · · · a1n
...

. . .
...

am1 · · · amn

⎞⎟⎠ ·

⎛⎜⎝x1
...
xn

⎞⎟⎠ ≤

⎛⎜⎝b1
...

bm

⎞⎟⎠
Here: every available (package, version) is mapped to a xi ∈ {0, 1}.
Cost vector: newer versions are cheaper than older versions.

(Obviously: less packages cheaper than more packages.)
Dependencies:

Package xa requires xb or xc : xb + xc − xa ≥ 0.
Packages xa and xb conflict: xa + xb ≤ 1.
(. . . )

Figures
≈17 000 available packages (n = 17000), 500 packages on “shopping list”
≈160 000 inequalities (m = 160000), solving time <10 s (glpk)
Meta RPM: ≈1 000 fully versioned packages, dependency closure

Idea: Mancinelli, Boender, di Cosmo, Vouillon, Durak (2006)
19 / 16


	Part I: CernVM Boot Loader
	Part II: Operating System on CernVM-FS
	Appendix
	Backup Slides


