Proton structure functions at small x:

recent results using NLO BFKL and DGLAP evolution

Martin Hentschinski

In collaboration with

Clara Salas Agustin Sabio Vera

Marco Stratmann

Based on:

- arXiv:1209.1353
 [PRL 110 (2013) 041601]
- arXiv:1301.5283
- in preparation

Motivation	BFK	(L at NLO	Phys. anom. dim.	Conclusions
	Outline			

Why study proton at small x?

BFKL resummation at NLO

Physical DGLAP splitting kernels

Conclusions

DeepInelasticScattering at small x

collinear factorization: excellent description

$$F_{2,L}(x,Q^2) = \mathsf{coeff.} \ \mathsf{funct.} \otimes \mathsf{pdfs}$$

 Q^2 dependence: DGLAP evolution

rise at small x

- DGLAP splitting functions
- intrinsic (non-pert.?) x-dependence of initial conditions

Question: Can we understand this x-dependence from first principles?

Perturbative analysis of high energy scattering

- \blacksquare multi scale regime $s \gg Q^2 \gg \Lambda_{\rm QCD}^2$
- $\alpha_s \ln(s/s_0) \sim 1$ resummation \rightarrow BFKL equation

- LL $\sum_{n} (\alpha_s \ln s)^n$ [Fadin, Kuraev, Lipatov (1977)], [Balitsky, Lipatov (1978)] - NLL $\sum_{n} \alpha_s (\alpha_s \ln s)^n$ [Fadin, Lipatov (1998)], [Ciafaloni, Gamici (1998)]

DIS: $\ln \frac{s}{Q^2} \equiv \ln \frac{1}{x}$

Life beyond BFKL: high density region

[EIC White Paper, arXiv:1212.1701]

here:

- restrict to BFKL at NLO no saturation effects considered
- breakdown at ultra small x ≡ evidence for saturation/CGC
- expect deviation for DIS on nuclear target
- higher sensitivity of Linear small x evolution to non-linear effects than e.g. DGLAP

$\text{BFKL} \equiv \text{interesting physics by itself}$

strong int^{a.} before QCD: soft Pomeron

 $\sigma(s) \sim s^{\alpha}$

 $\alpha\simeq .08$ soft Pomeron intercept

perturbative realization: BFKL

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusions

DIS: effective intercept

$$\lambda(Q^2) = \left\langle \frac{d\ln F_2}{d\ln 1/x} \right\rangle_x$$

- transition between soft and hard 'Pomeron'
- natural description in pert. QCD?
- NLO BFKL study [Ellis, Kowalski, Ross (2008)]; [Kowalski, Lipatov, Ross, Watt (2010)]

'Discrete Pomeron Solution';

successful description of combined HERA data

high energy factorization (up to NLL) of F_2

The BFKL gluon Green's function - scale choice

$$f_{\mathsf{BFKL}}\left(\frac{s}{s_0}, \boldsymbol{q}^2, \boldsymbol{p}^2, \mu^2\right) = \int \frac{d\omega}{2\pi i} \left(\frac{s}{s_0}\right)^{\omega} f_{\omega}\left(\boldsymbol{q}^2, \boldsymbol{p}^2, \mu^2\right)$$

symmetric kinematic $q^2 \sim p^2$ $\ln(s/s_0) \implies \Delta y \simeq \ln \frac{s}{|q||p|}$ asymmetric DIS kinematic $q^2 \gg p^2$ DGLAP suggests

 $\ln(s/s_0) \implies \ln 1/x_g \simeq \ln s/q^2$

The BFKL gluon Green's function - BFKL equation

$$f_{\mathsf{BFKL}}\left(\frac{s}{s_0}, \boldsymbol{q}^2, \boldsymbol{p}^2, \boldsymbol{\mu}^2\right) = \int \frac{d\omega}{2\pi i} \left(\frac{s}{s_0}\right)^{\omega} f_{\omega}\left(\boldsymbol{q}^2, \boldsymbol{p}^2, \boldsymbol{\mu}^2\right)$$

BFKL equation

$$\begin{split} \omega f_{\omega} \left(\boldsymbol{q}^2, \boldsymbol{p}^2 \right) = & \delta^{(2)} (\boldsymbol{q}^2 - \boldsymbol{p}^2) \\ &+ \int \frac{d^2 \boldsymbol{k}}{\pi} K_{\mathsf{BFKL}}(\boldsymbol{q}, \boldsymbol{k}) f_{\omega} \left(\boldsymbol{k}^2, \boldsymbol{p}^2 \right) \end{split}$$

BFKL Kernel

$$K_{\mathsf{BFKL}}(\boldsymbol{q},\boldsymbol{k}) = \left(\frac{\alpha_s N_c}{\pi}\right) K_{\mathsf{LO}}(\boldsymbol{q},\boldsymbol{k}) + \left(\frac{\alpha_s N_c}{\pi}\right)^2 K_{\mathsf{NLO}}(\boldsymbol{q},\boldsymbol{k})$$

LO diagonalized by scale invariant eigenfunctions

$$\int \frac{d^2 \boldsymbol{q}}{\pi} K_{\mathsf{LO}}(\boldsymbol{q}, \boldsymbol{p})(\boldsymbol{p}^2)^{\gamma - 1} = \frac{\alpha_s N_c}{\pi} \chi_0(\gamma)(\boldsymbol{q}^2)^{\gamma - 1}$$

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusio
Leading o	rder solution		
			$\operatorname{ss}\left(r_{1}, \frac{1}{2}\right)$
$f_{BFKL}^{LO}\left(rac{1}{x}, oldsymbol{q}^2, oldsymbol{p}^2 ight)$	$\left(p^2, \mu^2 ight) = rac{1}{q^2} \int\limits_{1/2 - i\infty}^{1/2 + i\infty} rac{d\gamma}{2\pi^2 i} \left(rac{d\gamma}{2\pi^2 i} ight)$	$\left(rac{m{q}^2}{m{p}^2} ight)^\gamma x^{-ar{lpha}_s\chi_0(\gamma)}$	
intercept at	saddle point $ u = 0$: $\lambda_{s.p.}^{\sf LO} = 2$	$\frac{\alpha_s N_c}{\pi} 4 \ln 2 \simeq .53$ for $\alpha_s = 0$.	$\gamma = \frac{1}{2} + i\nu$ $\alpha_s = 0.2$ 15
0.5 Combined HERA	data 🛶		

- order of magnitude correct
- \blacksquare adding naive running of the coupling $\alpha_s(Q^2)$ entirely contradicts data

00000

00000

NLO corrections: scale invariant terms

- negative NLO intercept in DIS kinematics $\lambda_{s.p.}^{\text{NLO}} \simeq -0.16$ for $\alpha_s = 0.2$ $\lambda_{s.p.}^{\text{NLO}} \simeq .01$ for $\alpha_s = 0.15$
- numerical instability
- reason: large (double) logs for (anti-) collinear limit of external momoenta
- γ rep.: (triple/double) poles at $\gamma = 0, 1$

(anti-)collinear poles of the NLO eigenvalue

$$\chi^{\rm NLO}(\gamma) \simeq \frac{\bar{\alpha}_s(1+\alpha_s a)}{\gamma} + \frac{\bar{\alpha}_s^2 b}{\gamma^2} + \frac{\bar{\alpha}_s(1+\alpha_s a)}{1-\gamma} + \frac{\bar{\alpha}_s^2 b}{(1-\gamma)^2} - \frac{\bar{\alpha}_s^2}{(1-\gamma)^3}$$

treatment: collinear factorization

$$\begin{array}{l} \begin{array}{l} \displaystyle \frac{1}{(1-\gamma)^3} & \Leftrightarrow \quad p^2 \gg q^2 \\ \\ \end{array} \text{ choice } s/s_0 = 1/x_g \text{ dictated by DGLAP for } q^2 \gg p^2 \\ \\ \displaystyle p^2 \gg q^2 \text{ DGLAP suggests: } (1/x_g)^{\omega} (q^2/(p^2)^{\omega}, \end{array} \end{array}$$

fix at LL : replace $\chi_0(\gamma)=2\psi(1)-\psi(\gamma)-\psi(1-\gamma)$

$$\implies \tilde{\chi}_0(\gamma, \omega) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma + \omega)$$
[Andersson, Gustafson, Samuelsson (1996)]

expand
$$\omega = \bar{\alpha}_s \tilde{\chi}_0(\gamma, \omega) = \bar{\alpha}_s \chi_0(\gamma) - \frac{\bar{\alpha}_s^2}{(1-\gamma)^3} + \mathcal{O}(\bar{\alpha}_s^3)$$

(anti-)collinear poles of the NLO eigenvalue

$$\chi^{\mathsf{NLO}}(\gamma) \simeq \frac{\bar{\alpha}_s(1+\alpha_s a)}{\gamma} + \frac{\bar{\alpha}_s^2 b}{\gamma^2} + \frac{\bar{\alpha}_s(1+\alpha_s a)}{1-\gamma} + \frac{\bar{\alpha}_s^2 b}{(1-\gamma)^2} - \frac{\bar{\alpha}_s^2}{(1-\gamma)^3}$$

coefficients a, b closely related to high energy limit of (N)LO DGLAP splitting kernels resummation [Salam (1998)]

$$\omega = \bar{\alpha}_s (1 + A\bar{\alpha}_s) \left(2\psi(1) - \psi\left(\gamma + B\bar{\alpha}_s\right) - \psi\left(1 - \gamma + \omega + B\bar{\alpha}_s\right)\right)$$
$$= \bar{\alpha}_s (1 + A\bar{\alpha}_s) \sum_{m=0}^{\infty} \left(\frac{1}{\gamma + m + B\bar{\alpha}_s} + \frac{1}{1 - \gamma + m + \omega + B\bar{\alpha}_s} - \frac{2}{m+1}\right)$$

disentangle complicated ω -dependence through 'all-pole-approximation' [Sabio Vera (2005)], [MH, Salas, Sabio Vera (2012)] \rightarrow resummed NLO eigenvalue

Note: do not add new information, only resum NLO BFKL divergenceses (in contrast to [Ciafaloni, Colferai, Salam, Stasto (2003), (2004), (2006), (2007)], [Altarelli, Ball, Forte (2003), (2004), (2005), (2008)])

LO

NLO NLO RG

(anti-)collinear poles of the NLO eigenvalue

$$\begin{split} \chi(\gamma) &= \bar{\alpha}_s \chi_0(\gamma) + \bar{\alpha}_s^2 \chi_1(\gamma) \\ &- \frac{1}{2} \bar{\alpha}_s^2 \chi_0'(\gamma) \chi_0(\gamma) + \chi_{\mathsf{RG}}(\bar{\alpha}_s, \gamma, a, b), \end{split}$$

with

$$\begin{split} \chi_{\mathsf{RG}}(\bar{\alpha}_s,\gamma,a,b) &= \bar{\alpha}_s (1+a\bar{\alpha}_s) \left(\psi(\gamma) - \psi(\gamma - b\bar{\alpha}_s)\right) - \frac{\bar{\alpha}_s^2}{2} \psi''(1-\gamma) - b\bar{\alpha}_s^2 \frac{\pi^2}{\sin^2\left(\pi\gamma\right)} \\ &+ \frac{1}{2} \sum_{m=0}^{\infty} \left(\gamma - 1 - m + b\bar{\alpha}_s - \frac{2\bar{\alpha}_s(1+a\bar{\alpha}_s)}{1-\gamma+m} + \sqrt{(\gamma - 1 - m + b\bar{\alpha}_s)^2 + 4\bar{\alpha}_s(1+a\bar{\alpha}_s)}\right) \end{split}$$

Weak k_T ordering at NLO

running coupling corrections with external scale dependence

$$\int \frac{d\gamma}{2\pi i} \frac{1}{\boldsymbol{q}^2} \left(\frac{\boldsymbol{q}^2}{\boldsymbol{p}^2}\right)^{\gamma} \bar{\alpha}_s \chi_0(\gamma) \left(-\frac{\alpha_s \beta_0}{4\pi} \ln \frac{|\boldsymbol{q}||\boldsymbol{p}|}{\mu^2}\right)$$

do not exponeniate \implies treated as pure NLO correction

NLO resummed Green's function:

$$\begin{split} f_{\mathsf{BFKL}}\left(\frac{1}{x_g}, \boldsymbol{q}^2, \boldsymbol{p}^2\right) &= \int \frac{d\gamma}{2\pi^2 i} \frac{1}{\boldsymbol{q}^2} \left(\frac{\boldsymbol{q}^2}{\boldsymbol{p}^2}\right)^{\gamma} x_g^{-\chi(\gamma)} \\ &\left[1 - \ln\left(\frac{1}{x_g}\right) \frac{\bar{\alpha}_s^2 \beta_0 \chi_0(\gamma)}{4N_c} \ln \frac{|\boldsymbol{q}||\boldsymbol{p}|}{\mu^2}\right] \end{split}$$

high energy factorization (up to NLL) of F_2

photon impact factor

improved kinematics

$$\begin{array}{l} \bullet \ \frac{\alpha_s(\mu^2)}{2\pi} \Phi_{\gamma^*}(\gamma,\omega=\chi(\gamma)), \\ [\mathsf{Kwiecinski, Martin, Stasto (1997)], [Bialas, Navelet, Peschanski (2001)] \end{array}$$

$$\lim_{\gamma \to 0} \Phi_{\gamma^*}(\gamma, \omega) = \frac{1}{\gamma^2} \gamma_{qg}(N = 1 + \omega) + \dots$$

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusions

proton impact factors

proton: Poisson distribution

$$\Phi_P\left(p,Q_0^2\right) = \frac{\mathcal{C}}{\Gamma(\delta)} \left(\frac{p^2}{Q_0^2}\right)^{\delta} e^{-\frac{p^2}{Q_0^2}}$$

Normalization ${\mathcal C}$ and parameters Q_0^2, δ to be determined from fit to data

Setting the renormalization scale

Several choices possible: ...

here: $\mu^2 = Q \cdot Q_0$

symmetric choice: both hard and soft scale

believe: takes into account best *t*-channel virtualities

Green's function:

$$\begin{split} f_{\mathsf{BFKL}}\left(\frac{1}{x_g}, \boldsymbol{q}^2, \boldsymbol{p}^2\right) &= \int \frac{d\gamma}{2\pi^2 i} \frac{1}{\boldsymbol{q}^2} \left(\frac{\boldsymbol{q}^2}{\boldsymbol{p}^2}\right)^{\gamma} x_g^{-\chi(\gamma)} \\ &\left[1 - \ln\left(\frac{1}{x_g}\right) \frac{\bar{\alpha}_s^2 \beta_0 \chi_0(\gamma)}{4N_c} \ln\frac{|\boldsymbol{q}||\boldsymbol{p}|}{\mu^2}\right] \end{split}$$

Running coupling corrections

Observation 1: can obtain description of data above $Q^2 = 5 \text{ GeV}^2$ possible, but requires extreme proton scales $Q_0^2 \simeq 1 \text{ GeV}^2$ and above (applies also to $\mu^2 = Q^2 etc.$)

Observation 2: more natural description, if one follows [Brodsky, Fadin, Kim, Lipatov, Pivovarov (1999)]:

- non-Abelian physical renormalization scheme ('MOM-scheme') in 'Yennie-gauge', $\xi=3$ - absorb entire (and sizeable) β_0 dependent terms of $\chi_{\rm NLO}(\gamma)$ into running coupling

parametrization in the infra-red

Useful, but not essential:

parametrization of the running coupling [Webber (1998)]

- compatible with power corrections to jet observables, preferable over simple freezing
- \blacksquare for the data: helps for $Q^2 < 4~{\rm GeV^2}$

$$\begin{split} \alpha_s \left(\mu^2\right) &= \frac{4\pi}{\beta_0 \ln \frac{\mu^2}{\Lambda^2}} + f\left(\frac{\mu^2}{\Lambda^2}\right) \\ f\left(\frac{\mu^2}{\Lambda^2}\right) &= \frac{4\pi}{\beta_0} \frac{125\left(1+4\frac{\mu^2}{\Lambda^2}\right)}{\left(1-\frac{\mu^2}{\Lambda^2}\right)\left(4+\frac{\mu^2}{\Lambda^2}\right)^4}. \end{split}$$

Comparison with HERA data - Pomeron intercept

Comparison with HERA data - F_2

- very accurate description of data for both LO photon (straight) [$\delta = 8.4$, $Q_0 = 0.28$ GeV, C = 1.50] and photon with improved kinematics (dashed) [$\delta = 6.5$, $Q_0 = 0.28$ GeV, C = 2.39]
- $\hfill find expected deviations at large <math display="inline">x$ and large Q^2

Comparison with HERA data - F_L

- accuracy of the data considerably diminished w.r.t. F₂
- Inclusive observable: $\langle F_L \rangle_x$
- only change in setup: photon imact factor (quark loop) for long. polarized photon
- LO photon (straight) and photon with improved kinematics (dashed)

 F_L unaveraged

Predictions for an *e.g.* LHeC

Extrapolating our result to proton structure functions at ultra-small \boldsymbol{x}

LO photon (straight)

LO photon with improved kinematics (dashed)

Short intermediate summary

- NLO BFKL describes combined HERA data in the kinematic regime associated with the BFKL framework
 - small $x < x_0$, $x_0 \sim 0.5 \cdot 10^{-2} 1.0 \cdot 10^{-2}$
 - perturbative QCD $Q^2>2{\rm GeV}^2$
 - $Q^2 > 150 {\rm GeV}^2$ and $x > .5 \cdot 10^{-2}$ require probably more DGLAP dynamics
 - ➡ NLO corrections to photon
- both collinear resummations and BLM like treating of the running coupling needed
- \blacksquare (resummed) not-running coupling NLO corrections still sizeable and important; roughly a 30% correction over the full range of Q^2

Part II DGLAP evolution and physical splitting functions a first numerical implementation

DGLAP evolution (at small x)

collinear factorization $F_{2,L}(Q^2) = C\left(\frac{Q^2}{\mu_f^2}\right) \otimes f(\mu_f^2)$

DGLAP $\partial_{\ln \mu_f^2} f = P \otimes f$ evolution w.r.t. factorization scale μ_f^2 factorization \implies universality of f = q, g (we like that!)

rise of F_2 at small x

- perturvative: DGLAP splitting kernels P (share DL with BFKL)
- non-perturbative: intrinsic distribution from fit $(g \sim x^{0.1})$

drawback of factorization:

- \blacksquare q, g given by theory definition (\implies factorization scheme)
- differences between schemes can be large $\sim (lpha_s \ln 1/x)^n$

(don't like that so much)

don't care so much if I only want to parametrize my data

 \dots but if I want to understand physics at small x, this matters

[EIC White Paper, arXiv:1212.1701]

- what is evolution (JIMWLK, BFKL, DGLAP)?
- what is a clever scheme choice?

affects also BFKL and BK/JIMWLK evolution \ldots

DGLAP also many pdfs with many parameters

solution: direct evolution of structure functions

$$\begin{array}{ccccc} ``& \partial_{\ln Q^2}F(x,Q^2)=&K&\otimes&F(x,Q^2)&"\\ &\uparrow&\uparrow&\uparrow\\ &\text{obs.}\to&\text{obs.}&\leftarrow&\text{obs.} \end{array}$$

evolution kernels ${\boldsymbol{K}}$

physical

no scheme ambiguity (only renormalization scale)

in principle equivalent to [Catani (1996)]

$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

idea around for a while:

[Bardeen, Buras (1979)], [Floratos, Kounnas, Lacaze (1981)], [Grunberg (1984)], [Catani (1996)], [Blümlein, Ravindran, van Neerven (2000)], [Vogt, Moch, Soar, Vermaseren (2010)]

➡ address for the first time numerical implementation

POETIC2013

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusio
			issue 1
DGLAP equat	ion = matrix equation:		
	$\partial_{\ln \mu_f^2} f = P \otimes f$	f = q, g	
	-		

$$n_f = 3$$

3 quark, 1 gluon pdf \rightarrow NS_1, NS_2

need 4 observables to disentangle this $(F_2^p, F_2^n, F_L, F_3) \implies$ possible, but involved

small x: $\Sigma = \text{sea quark, NS} = 0$

 $(F_2, F_L) \Leftrightarrow (\Sigma, g)$

Determination of physical evolution kernels

define:

$$\boldsymbol{F} = \left(\begin{array}{cc} F_2 \\ F_L \end{array}\right) \quad \boldsymbol{C} = \left(\begin{array}{cc} C_{2q} & C_{2g} \\ C_{Lq} & C_{Lg} \end{array}\right) \quad \boldsymbol{f} = \left(\begin{array}{cc} \Sigma \\ g \end{array}\right) \quad \boldsymbol{P} = \left(\begin{array}{cc} P_{qq} & P_{qg} \\ P_{gq} & P_{gg} \end{array}\right)$$

requires Mellin/Moment space with $a(N) = \int_0^1 dx x^{N-1} a(x) \implies \otimes \to \cdot$

with $a_s\equiv \frac{\alpha_s}{4\pi}$

issue 2

$$ilde{m{K}} = \left[eta rac{dm{C}}{da_s} \cdot m{C}^{-1} + m{C} \cdot m{P} \cdot m{C}^{-1}
ight]$$

$$C_{2q} = \mathcal{O}(1) \qquad \qquad C_{Lq}, C_{Lg} = \mathcal{O}(a_s)$$

 $\longrightarrow \text{ mix different orders of } a_s \text{ in } \tilde{K}$ $\longrightarrow \text{ scale dependence inside the kernels!}$ $\text{ solution: scheme independence of } C_{Lq}^{(1)}, C_{Lg}^{(1)} \longrightarrow \text{ evolve } \tilde{F} = (F_2, \tilde{F}_L)$

$$\begin{split} \tilde{F}_{L}^{(g)} &= \frac{F_{L}}{a_{s}C_{Lg}^{(1)}} & \qquad \qquad \tilde{F}_{L}^{(q)} &= \frac{F_{L}}{a_{s}C_{Lq}^{(1)}} \\ \\ [Blümlein, Ravindran, van & \qquad [Vogt, Moch, Soar, Neerven (2000)] & \qquad Vermaseren (2010)] \end{split}$$

argued that choice matters \implies up to NLO identical results

$$\Longrightarrow$$
 modified coefficient matrix \tilde{C} $K = \left[eta rac{dC}{da_s} \cdot \tilde{C}^{-1} + \tilde{C} \cdot P \cdot
ight]$

 \tilde{C}^{-1}

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusions

perturbative expansion: LO

$$\boldsymbol{K} = \left(\begin{array}{cc} K_{22} & K_{2L} \\ K_{L2} & K_{LL} \end{array}\right)$$

perturbative expansion

$$\mathbf{K} = a_s \mathbf{K}^{(0)} + a_s^2 \mathbf{K}^{(1)} \quad \mathbf{C} = \mathbf{C}^{(0)} + a_s \mathbf{C}^{(1)} + a_s^2 \mathbf{C}^{(2)} \quad \mathbf{P} = a_s \mathbf{P}^{(0)} + a_s^2 \mathbf{P}^{(1)}$$

LO kernels (using the quark convention)

$$\begin{split} K_{22}^{(0)} &= P_{\mathsf{qq}}^{(0)} - \frac{C_{\mathsf{Lq}}^{(1)} P_{\mathsf{qg}}^{(0)}}{C_{\mathsf{Lg}}^{(1)}} & K_{2L}^{(0)} = \frac{C_{\mathsf{Lq}}^{(1)} P_{\mathsf{qg}}^{(0)}}{C_{\mathsf{Lg}}^{(1)}} \\ K_{L2}^{(0)} &= \frac{C_{\mathsf{Lg}}^{(1)} P_{\mathsf{gq}}^{(0)}}{C_{\mathsf{Lq}}^{(1)}} - \frac{C_{\mathsf{Lq}}^{(1)} P_{\mathsf{qg}}^{(0)}}{C_{\mathsf{Lg}}^{(1)}} - P_{\mathsf{gg}}^{(0)} + P_{\mathsf{qq}}^{(0)} & K_{LL}^{(0)} = \frac{C_{\mathsf{Lq}}^{(1)} P_{\mathsf{qg}}^{(0)}}{C_{\mathsf{Lg}}^{(1)}} + P_{\mathsf{gg}}^{(0)} \end{split}$$

standard solution for $\partial_{\ln Q^2} F = K \cdot F$:

$$\mathbf{F}(N,Q^2) = \mathbf{D}^{-1}(Q^2) \left[\left(\frac{a_s}{a_0} \right)^{\lambda_+(N)} e_+(N) + \left(\frac{a_s}{a_0} \right)^{\lambda_-(N)} e_-(N) \right] \mathbf{D}(Q_0^2) \cdot \mathbf{F}(N,Q_0^2)$$
$$a_s = a_s(Q^2) \qquad a_0 \equiv a_s(Q_0^2)$$

 $\lambda_\pm(N)$ eigenvalues of the matrix $\pmb{K}^{(0)},~e_\pm(N)$ projectors on eigenspaces matrix \pmb{D} achieves rotation $\tilde{\pmb{F}}=\pmb{D}\cdot\pmb{F}$

Observation:

- $\lambda_{\pm}(N)$ agree for $K^{(0)}$ and $P^{(0)}$
- eigenspaces differ, but final result for (F_2, F_L) agrees exactly!

→ at LO, physical and DGLAP evolution are the same

Motivation	BFKL at NLO	Phys. anom. dim.	Conclusions

NLO Kernels obtained easily

for the 'quark' convention

$$\begin{split} K_{22}^{(1)} &= -\frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{gg}^{(0)}}{C_{Lg}^{(1)}} + C_{2g}^{(1)}P_{gq}^{(0)} + \frac{\beta_0 C_{2g}^{(1)}C_{Lq}^{(1)}}{C_{Lg}^{(1)}} \\ &\quad - \frac{C_{2g}^{(1)}C_{Lq}^{(1)2}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qq}^{(0)}}{C_{Lg}^{(1)}} - \beta_0 C_{2q}^{(1)} \\ &\quad + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} - \frac{C_{Lq}^{(1)}P_{qg}^{(1)}}{C_{Lg}^{(1)}} - \frac{C_{Lq}^{(2)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + P_{qq}^{(1)} \\ K_{2L}^{(1)} &= \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{gg}^{(0)}}{C_{Lg}^{(1)}} - \frac{\beta_0 C_{2g}^{(1)}C_{Lq}^{(1)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} \\ &\quad - \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qq}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2q}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} - \frac{C_{Lg}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} + \frac{C_{Lq}^{(1)}P_{qg}^{(1)}}{C_{Lg}^{(1)}} \\ \end{split}$$

$$\begin{split} K_{L2}^{(1)} &= -\frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{gq}^{(0)}}{C_{Lg}^{(1)}} + C_{2g}^{(1)}P_{gq}^{(0)} - \frac{C_{2g}^{(1)}C_{Lq}^{(1)\,2}P_{qg}^{(0)}}{C_{Lg}^{(1)\,2}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qq}^{(0)}}{C_{Lg}^{(1)}} \\ &+ C_{2q}^{(1)}P_{gg}^{(0)} - \frac{C_{2q}^{(1)}C_{Lg}^{(1)}P_{gq}^{(0)}}{C_{Lq}^{(1)}} + \frac{C_{2q}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} - C_{2q}^{(1)}P_{qq}^{(0)} - \frac{C_{Lq}^{(2)}P_{gg}^{(0)}}{C_{Lq}^{(1)}} \\ &+ \frac{C_{2g}^{(2)}P_{gq}^{(0)}}{C_{Lq}^{(1)}} + \frac{C_{Lg}^{(1)}P_{gq}^{(1)}}{C_{Lg}^{(1)}} + \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} - \frac{C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{2C_{Lq}^{(2)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} - \frac{\beta_0C_{Lq}^{(2)}}{C_{Lq}^{(1)}} + \frac{C_{Lg}^{(2)}P_{qq}^{(0)}}{C_{Lg}^{(1)}} - P_{gg}^{(1)} + P_{qq}^{(1)} \\ K_{LL}^{(1)} &= \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{gg}^{(0)}}{C_{Lg}^{(1)}} - C_{2g}^{(1)}P_{gq}^{(0)} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)2}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} - \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)2}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} - \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)2}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} + \frac{C_{2g}^{(1)}C_{Lq}^{(1)}P_{qg}^{(0)}}{C_{Lg}^{(1)}} \\ &- \frac{\beta_0C_{Lg}^{(2)}}{C_{Lg}^{(1)}} - \frac{C_{2g}^{(2)}C_{Lg}^$$

NLO solution

no exact analytic solution at NLO, use solution by $\mbox{ Glück, Reya Vogt (1990)]}$, also used in $\rm Pegasus$ [Vogt (2004)] :

$$\boldsymbol{F}(N,Q^2) = \boldsymbol{D}^{-1} \left\{ \left(\frac{a_s}{a_0} \right)^{\lambda_+} \left[e_+(N) + (a_0 - a_s)e_+ \cdot \boldsymbol{R}^{(1)} \cdot e_+ \right. \\ \left. + \left[a_0 - a_s \left(\frac{a_s}{a_0} \right)^{\lambda_- - \lambda_+} \right] \frac{e_- \cdot \boldsymbol{R}^{(1)} \cdot e_-}{\lambda_+ - \lambda_- + 1} \right] + (+) \leftrightarrow (-) \right\} \boldsymbol{D} \cdot \boldsymbol{F}(N,Q_0^2)$$

NLO corrections inside

$$\boldsymbol{R}^{(1)} = \frac{1}{\beta_0} \boldsymbol{K}^{(1)} - \frac{\beta_1}{\beta_0^2} \boldsymbol{K}^{(0)}$$

running coupling at NLO

$$rac{da_s}{d\ln\mu^2}=-a_s^2eta_0-a_s^3eta_1$$
 — solved numerically

Numerical implementation

- \blacksquare parallel implementation for conventional 'coeff \otimes pdf' and physical evolution kernels
- two independent codes (FORTRAN, MATHEMATICA) + pdf evolution cross-checked with PEGASUS [Vogt (2004)]
- use same input at $Q_0^2 = 2 {\rm GeV}^2$, given in terms of toy-pdfs (${\rm PEGASUS}$ default intial parton distributions) with $n_f=3$ and $\alpha_s(Q_0^2)=0.35$

$$\begin{split} &xu_v(x,Q_0^2) = 5.10722x^{0.8}(1-x)^3 \\ &xd_V(x,Q_0^2) = 3.064320x^{0.8}(1-x)^4 \\ &xg(x,Q_0^2) = 1.70000x^{-0.1}(1-x)^5 \\ &x\bar{d}(x,Q_0^2) = 0.1939875x^{-0.1}(1-x)^6 \\ &x\bar{u}(x,Q_0^2) = (1-x)x\bar{d}(x,Q_0^2) \\ &xs(x,Q_0^2) = x\bar{s}(x,Q_0^2) = 0.2(\bar{u}+\bar{d})(x,Q_0^2) \end{split}$$

C⁽⁰⁾, $C^{(1)}$ and $P^{(0)}$, $P^{(1)}$ taken from [Floratos, Kounas, Lacaze (1981)], $C_{Lq,g}^{(2)}$ in the parametrized version of [van Neerven, Vogt (1999), (2000)]

First numerical results – the (toy) structure function F_L

- (straight) physical kernels
- (dashed) coeff ⊗ pdf
- relative difference at large x huge : $\mathcal{O}(20\%)$ for $Q^2 = 10 \text{ GeV}^2$ $\mathcal{O}(30\%)$ for $Q^2 = 100 \text{ GeV}^2$
- reasonable at small x: $\mathcal{O}(1.3\%)$ for $Q^2 = 10 \text{ GeV}^2$ $\mathcal{O}(1.6\%)$ for $Q^2 = 100 \text{ GeV}^2$

First numerical results – the (toy) structure function F_2

- (straight) physical kernels
- (dashed) coeff ⊗ pdf
- relative difference at large x less dramatic, but still ... : $\mathcal{O}(2.4\%) \text{ for } Q^2 = 10 \text{ GeV}^2$ $\mathcal{O}(7.4\%) \text{ for } Q^2 = 100 \text{ GeV}^2$
- increased at small x: $\mathcal{O}(6.3\%)$ for $Q^2 = 10 \text{ GeV}^2$ $\mathcal{O}(8.8\%)$ for $Q^2 = 100 \text{ GeV}^2$

Why are difference so large?

[[]Moch, Vogt, Vermaseren (2004)]

- coefficents $C_{L,qg}^{(2)}$ are large corrections → rotated into evolution kernels
- "coeff \otimes pdf": with $a_s(Q^2)$
- physical kernels: at the initial scale a_s(Q²₀)

Why is this difference so large?

■ can one control this ...? study in progress

Summary and Conclusions

2nd NLO BFKL fit to combined HERA data

- solution expressed through LO eigenfunctions (no discrete Pomeron solution as by KLRW)
- use RG improvements + BLM scale setting for Green's function + parametrization of running coupling in the infra-red
- excellent agreement with data in BFKL region, deviations for $Q^2 > 150 \text{GeV}^2$, $x > 0.5 \cdot 10^{-2}$ and $Q^2 < 1.2 \text{GeV}^2$.

possible improvements mainly for the photon

- NLO corrections [Bartels, Gieseke, Qiao (2000)], [Bartels, Gieseke, Kyrieleis (2001)], [Bartels, Colferai, Gieseke, Kyrieleis (2002)], [Bartels, Kyrieleis (2004)], [Bartles, Chachamis (2006)], [Balitsky, Chirillis (2011), (2013)], [Beuf (2012)]
- quark masses
- treatment of running coupling

Summary and Conclusions

1st numerical implementation of physical anomalous dimensions

- use small x approximation \rightarrow (F_2, F_L)
- \blacksquare at LO identical to conventional DGLAP 'coeff. \otimes pdf'
- **a** at NLO, 'quark' and 'gluon' convention for \tilde{F}_L give same result
- \blacksquare at NLO, difference between 'coeff. \otimes pdf' and physical kernels sizeable

Question:

- Can this differences be reduced or simply a feature of physical evolution kernels?

Backup

