March 7, 2013

Using Slow Protons in e-A at an EIC

Raphaël Dupré

Institut de Physique Nucléaire d'Orsay CNRS - IN2P3 Université Paris-Sud

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

Overview

March 7, 2013

→ How to study hadronization at an EIC ?

→ What can we measure in EIC?

→Can we use total charge measured like in RHIC/LHC to determine centrality ?

- Can we find other similar method applicable to lepton scattering ?
 - ➔ How the nuclei is breaking up?
- Implications for measurement of other nuclear effects
 - Because this can be used for many nuclear effects

The Hadronization Process

- Non perturbative QCD process
 - → Need Models
- → Formation time → propagation of the color neutral prehadron
- → No experimental quantification of these times !
 - Models indicate few fm level
- Nuclear targets of different size will help to measure them
 - → Leads to more complicated models

Observables

→Multiplicity ratio

→ Characterizes the attenuation (1- R)

$$R_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T}) = \frac{N_{A}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{A}^{e}(Q^{2}, x_{Bj})}{N_{D}^{h}(Q^{2}, x_{Bj}, z, P_{T})/N_{D}^{e}(Q^{2}, x_{Bj})}$$

→Transverse momentum broadening

Characterizes the modification of the Pt spectrum

$$\Delta \boldsymbol{P}_{T}^{2} = \langle \boldsymbol{P}_{T}^{2} \rangle_{A} - \langle \boldsymbol{P}_{T}^{2} \rangle_{D}$$

Motivations

→Understand the hadronization process by

- ➔ Measuring the characteristic times
- Calculating parton energy loss in QCD medium
- ➔ Understanding the pre-hadron structure

→Characterization of the QCD medium

- → Using parton energy loss
- → Comparing cold and hot nuclear matter
- → QCD evolution in medium

→Reduce systematic effects when attenuation needs to be corrected

→ Neutrino experiments especially

Theoretical Models in Nuclear Medium

→Parton energy loss or Hadron absorption ?

→Modification of the evolution ?

Leads to a modification of fundamental fragmentation functions

→Many models exists with different answers to these questions

- → Pure parton energy loss or hadron absorption models
- → Mixed models (with all the possible combinations represented)

→SLAC experiment

➔ First experiment, rough measurement of ratios

→EMC experiment (CERN)

- → Measure ratios at higher energy with a little more precision
- →E665 experiment (Fermi Lab)
 - → Ratios measured relatively to the number of slow protons
 - Enlighten the difference between target and current fragmentation

→HERMES experiment (DESY)

- Differentiate the hadrons
- Transverse momentum broadening measurement
- →Hall C experiment (JLab)
 - Limited kinematic but precise and useful
- →CLAS experiment (JLab)
 - Very important statistics and nuclei panel

HERMES Results : The Pion Ratios

→Pion behavior coherent with all previous results for hadrons

- ➔ no differences are observed with the 3 pions
- →GiBUU model based on prehadron absorption can describe these data
 - ➔ no quark energy loss
 - Production and formation times extracted from PYTHIA
 - Prehadron cross section growing linearly with time

→Can be explained by

- → the smaller cross section of K+
 - → Success in GiBUU but miss K-
- → the different behavior of the FF
 - Not enough as seen in Monte-Carlo simulation (Accardi & RD)
- → contamination from π + p \rightarrow A + K

(Kopeliovich et al.)

→Can be resolved by selecting higher z

→ Less target fragmentation

HERMES Results : The Cronin Effect

→Cronin effect is limited in the case of anti-protons

→Cronin effect is stronger at low z

- Enhancement due to target fragmentation leaking in the sample
- Interpretation of data in terms of hadronization requires careful selection of events

CLAS Preliminary Results : A Dependence

→Nuclear effect saturates at high A – Does not follow A1/3 or A2/3

Can be resolved within parton energy loss picture with small production time

Multiplicity ratio and Pt broadening follow the same trend

Do they originate from the same process ?

HERMES Results : Two Pions Ratio

→Multiplicity ratio of two hadrons production

→The A scaling disappears

- ➔ in contradiction with all models
- ➔ most model ignore these data

→Explanation based on a modification of the FF ?

Part of the energy lost by the leading hadron goes to the sub-leading hadrons ?

CLAS Preliminary Results: Pt broadening

→Cronin effect

- → stronger than for HERMES
- → vary with v not z unlike HERMES
- Higher z cut reduce the effect from target fragmentation

→Replaced by a Fermi motion effect?

CLAS Preliminary Results: Pt broadening

→Monte-Carlo simulation shows a strong effect to be expected from Fermi motion

- Dilute the signal observed from hadronization
- Can be reduced by using carbon as reference nuclei

→Moderated Cronin effect observed for C/Pb confirms the MC expectation

The method should be generalized at CLAS energy to reduce FM effects

CLAS Preliminary Results: Pb/C

→Reproduce the ratios of HERMES

- → Slope in v similar to HERMES
- → Slope in z not as pronounced as in HERMES (?)

→Results for Δpt2 coherent with HERMES

CLAS Preliminary Results: Q2 evolution

→Smaller coverage than HERMES

→No effect with Δpt2

to be compared with expectations from theory

→Small raise of the multiplicity ratio

- → Same as HERMES
- But here binned in nu!

→More leverage is needed to solve this question → EIC

Experiment at CLAS12

→Proposal by K. Hafidi, W. Brooks et al.

"Quark Propagation and Hadron Formation"

→Goals

- To explore both attenuation and ΔPT2
- Many particles available as in HERMES

→Advantages

- Larger kinematic coverage than CLAS
- → Larger luminosity than CLAS (x10) and HERMES (x1000)

The Electron Ion Collider (EIC)

- Project of electron ion collider (EIC)
 - JLab and RHIC projects s~1000GeV² and more
 - Low to no attenuation region \rightarrow centered on ΔP_T^2 measurement
 - Isolate energy loss effects and eventually modification of FF
 - Access to heavy flavor for comparison with Heavy Ion Collisions

→Luminosity: 200 fb-1

→ or 115 days at 2.10^34 cm-2s-1 per target

→Use two energies

- → s = 200 GeV2
- → s = 1000 GeV2

→Cuts to select DIS on a single quark

→ Q2 > 1 GeV2 & W > 4 GeV

→ XBj > 0.1 (permit to suppress di-quark production)

→Cut to select leading hadrons

→ z > 0.4

→Experimental limits

→ 0.1 < y < 0.85

→Acceptance assumed

→ π , K and η A = 50%

→ D and B A = 2%

Understanding the Dynamic of η Production In-Medium (s=200, GeV2)

Difference between π0 and η will permit to find which process is dominant, hadron absorption or parton energy loss (A. Accardi)

→ For 20 < v < 30 GeV</p>

Ratio at s = 1000 GeV2 & 100 < v < 130 GeV

High precision measurement of attenuation as a function of v and z for π, K and D mesons.

Will permit to understand the behavior of heavy quarks observed at RHIC/LHC

Ratio at s = 200 GeV2

Q2 evolution

March 7, 2013

Flavor scaling of ΔPT2 (s=200 GeV2)

→Work from Domdey et al. leads to a simple scaling of pQCD in-medium energy loss between quark flavors

→Can be easily measured at any EIC energy (here 20 < v < 30 GeV)</p>

Heavy Quarks Energy Loss (s=1000 GeV2)

→∆PT2 dependence in A and z gives indication about the nature of parton energy loss.

→Is the pattern similar for heavy and light quarks?

What happens at high energy ?

March 7, 2013

Hadronization effect gets smaller at higher energy. How to deal with that ?

March 7, 2013

There is some data to explore this question !

- → E665 experiment at Fermi Lab
- → μ -D (6000 events) and μ -Xe (2000 events)
- → 490 GeV beam energy

Z. Phys. C 65, 225-244 (1995)

ZEITSCHRIFT FÜR PHYSIK C © Springer-Verlag 1995

Nuclear shadowing, diffractive scattering and low momentum protons in μ Xe interactions at 490 GeV

E665 Collaboration

M.R. Adams⁶, M. Aderholz¹¹, S.Aïd^{9,a}, P.L. Anthony^{10,b}, M.D. Baker¹⁰, J. Bartlett⁴, A.A. Bhatti^{13,c}, H.M. Braun¹⁴, W. Busza¹⁰, T.J. Carroll¹¹, J.M. Conrad⁵, G. Coutrakon^{4,d}, R. Davisson¹³, I. Derado¹¹, S.K. Dhawan¹⁵, W. Dougherty¹³, T. Dreyer¹, K. Dziunikowska⁸, V. Eckardt¹¹, U. Ecker^{14,a}, M. Erdmann^{1,e}, A. Eskreys⁷, J. Figiel⁷, H.J. Gebauer¹¹, D.F. Geesaman², R. Gilman^{2,f}, M.C. Green^{2,g}, J. Haas¹, C. Halliwell⁶, J. Hanlon⁴, D. Hantke¹¹, V.W. Hughes¹⁵, H.E. Jackson², D.E. Jaffe^{6,h}, G. Jancso¹¹, D.M. Jansen^{13,i}, K. Kadija^{11,†}, S. Kaufman², R.D. Kennedy³, T. Kirk^{4,j}, H.G.E. Kobrak³, S. Krzywdzinski⁴, S. Kunori⁹, J.J. Lord¹³, H.J. Lubatti¹³, D. McLeod⁶, S. Magill^{6,j}, P. Malecki⁷, A. Manz¹¹, H. Melanson⁴, D.G. Michael^{5,k}, W. Mohr¹, H.E. Montgomery⁴, J.G. Morfin⁴, R.B. Nickerson^{5,1}, S. O'Day^{9,m}, K. Olkiewicz⁷, L. Osborne¹⁰, V. Papavassiliou^{15,j}, B. Pawlik⁷, F.M. Pipkin^{5,*}, E.J. Ramberg^{9,m}, A. Röser^{14,o}, J.J. Ryan¹⁰, C.W. Salgado⁴, A. Salvarani^{3,p}, H. Schellman¹², M. Schmitt^{5,q}, N. Schmitz¹¹, K.P. Schüler^{15,r}, H.J. Seyerlein¹¹, A. Skuja⁹, G.A. Snow⁹, S. Söldner-Rembold^{11,s}, P.H. Steinberg^{9,*}, H.E. Stier^{1,*}, P. Stopa⁷, R.A. Swanson³, R. Talaga^{9,j}, S. Tentindo-Repond^{2,t}, H.-J. Trost^{2,u}, H. Venkataramania¹⁵, M. Wilhelm¹, J. Wilkes¹³, Richard Wilson⁵, W. Wittek¹¹, S.A. Wolbers⁴, T. Zhao¹³

¹ Albert-Ludwigs-Universität Freiburg i. Br., Germany

² Argonne National Laboratory, Argonne, IL USA

³ University of California, San Diego, CA USA

⁴ Fermi National Accelerator Laboratory, Batavia, IL USA

Existing Data

March 7, 2013

→ Kinematics

- → Low x (0.002 \rightarrow 0.1)
- → Q² > 1 GeV² / W > 8 GeV
- → Hadrons measured from p > 200 MeV/c

→ Grey Tracks (n_g)

→ Energy deposit significantly higher than MIP
→ 200

Fig. 2. Average total hadronic net charge $\langle Q_T \rangle$, average number of grey tracks $\langle n_g \rangle$ and difference of average charged backward multiplicities $\langle n_B \rangle_{\mu Xe} - \langle n_B \rangle_{\mu D}$ in μXe and μD scattering as a function of the leptonic energy transfer ν . The lines represent the predictions of the VENUS model

→ Three correlated observables :

- → Total charge
- → Backward charge
- → Grey tracks

Which should we use ?

→Which can we measure best in a collider ?

Fig. 6. Average hadronic net charge as a function of the number n_g of grey tracks for μ Xe and pXe scattering, in the total rapidity region ($\langle Q_T \rangle$) and in the backward ($\langle Q_B \rangle$) and forward ($\langle Q_F \rangle$) hemispheres. The lines represent the predictions of the VENUS model

Grey Tracks

March 7, 2013

→Xe similar to deuterium when no Grey tracks are observed (with 75% efficiency) !

→ We are close to the spectator case

Fig. 3. Average hadronic net charge $d\langle Q \rangle/dy^*$ as a function of y^* , in μD events and in μXe events with $(n_g \neq 0)$ and without $(n_g = 0)$ grey tracks

Number of Grey tracks to be expected

→ 0 and 1 Grey tracks represent 90% of the events → Luminosity at EIC will allow to go further

Fig. 5. Multiplicity distribution $P(n_g)$ of grey tracks for μ Xe and pXe scattering. The lines represent the predictions of the VENUS model

Enhancement of Nuclear Effects

March 7, 2013

Requesting Grey tracks enhance the nuclear effects !

→ Example for hadronization studies:

Fig. 10. Multiplicity ratio $R(n_g)_{\mu Xe}$ (full circles) and $R(n_g)_{\mu Xe}$ (open triangles) as a function of the number n_g of grey tracks. The plots are for all charged, for positive and negative hadrons, and for three rapidity intervals (target, central, projectile). The lines are the results of straight-line fits to the data points

Shadowing Effect

Studied as function of net charge !

Results showed the importance of diffractive processes

Fig. 25. Distribution of the charged hadron multiplicity n_X of the 'diffractive system', in the shadowing (sha, **a**) and **c**)) and non-shadowing (nsh, **b**) and **d**)) region of μ Xe scattering. In each subfigure the SRG event sample is compared with the LRG event sample. **a**) and **b**) are for the experimental data, **c**) and **d**) for the VENUS Monte Carlo data. The lines are drawn to guide the eye

Detection Issues

→ Total charge / Backward charge

- → Similar to HIC
- Subject to fluctuations relatively large in regard to the limited total multiplicity

→ Grey tracks

→ Correspond to angles up to 0.7 degrees (for 10x50)

→ Beyond?

- → Neutrons
- → Other baryons
- → Nuclear fragments?

Ultra-forward hadron detection

- *Neutron* detection in a 25 mrad cone *down to zero degrees*
 - Excellent acceptance for *all ion fragments*
 - Recoil baryon acceptance:
 - up to 99.5% of beam energy for *all angles*
 - down to 2-3 mrad for all momenta
 - Momentum *resolution* $< 3x10^{-4}$
 - limited by intrinsic beam momentum spread

e

n

р

Grey tracks are useful to study nuclear effects

➤ Enhancement of hadronization effects by selecting long paths in nuclei → Sizable ratios & increased transverse momentum broadening

→ EIC can do better than E665 in this domain

- Can detect protons from energy 0 Mev to few hundreds MeV easily
- → Can detect neutrons too
- → And other heavier fragments?

→ Other physics topics available:

- Position information for effect such as shadowing or EMC
- →
- → Others ?

Physics Outlook

→ Hadronization at EIC

- → Large kinematic coverage
- → Clean access to parton energy loss
- Observation of heavy quarks in CNM

→ Grey Tracks at EIC

- Access larger number of Grey tracks using the high luminosity
- → Access also to neutrons
- ➔ Possibility to see heavier fragments

→ New tool for all nuclear effects study