Nucleon and nuclear structure at the EIC

Alberto Accardi Hampton U. and Jefferson Lab

POETIC 2013

Universidad Técnica Federico Santa María Valparaíso, CHILE 4-8 March 2013

Protons and Deuterons: partons at large x

- *d*/*u* ratio extrapolated to *x*=1
- W' and Z' production

Constraining nuclear uncertainties

- W,Z in proton collisons (!?)
- JLab, EIC

From Deuterons to larger nuclei

- Inclusive DIS from small to large x
- Jets at the EIC

Protons and Deuterons: partons at large x

Why large x ?

Large (experimental) uncertainties in Parton Distribution Functions (PDFs)

Precise PDFs at large x are needed, *e.g.*,

- Non-perturbative nucleon structure:
 - d/u, $\Delta u/u$, $\Delta d/d$ at $x \rightarrow 1$
- at LHC, Tevatron
 - New physics as excess on QCD large p_{τ} spectra \Leftrightarrow large x PDF
 - Forward physics
- At RHIC:
 - Polarized gluons at the smallest x
- Neutrino oscillations, ...

At large x, valence u and d extracted from p and n DIS structure functions

$$F_2^p \approx \frac{4}{9}u_v + \frac{1}{9}d_v$$
$$F_2^n \approx \frac{1}{9}u_v + \frac{4}{9}d_v$$

- *u* quark distribution well determined from proton data
- *d* quark distribution requires neutron structure function

$$\frac{d}{u} \approx \frac{4F_2^n / F_2^p - 1}{4 - F_2^n / F_2^p}$$

But... deuteron corrections!

Deuteron model dependence obscures free neutron at large x

- We will see quantitatively how much

```
accardi@jlab.org
```

Large x at colliders - new physics searches

$$\Box$$
 Remember, $x = \frac{M}{\sqrt{s}}e^{y}$

Examples:

- Z' production $M_Z'\gtrsim 1~{
 m TeV}$
- W at forward rapidity: y > 2

x > 0.1 (LHC) x > 0.5 (Tevatron)

- Precise large-x PDFs needed to:
 - reduce QCD background
 - optimize searches involving large masses
 - precisely characterize new particles

The CTEQ-JLab global fits

Collaborators:

- A.Accardi, E.Christy, C.Keppel, K.Kovarik, W.Melnitchouk,
 P.Monaghan, J.Owens
- Goals:
 - Improve llarge-*x* experimental precision (PDF errors) with larger DIS data set
 - Include all relevant large-x / small-Q² theory corrections
 - Quantitatively evaluate theoretical systematic errors
 - Use PDFs as tools for nuclear and particle physics
- Public release: CJ12
 - Owens, Accardi, Melnitchouk, arXiv:1212.1702
 - www.jlab.org/cj
 - In next LHAPDF release (soon to appear)

CJ12 parton distributions

CJ12 parton distributions

CJ12 parton distributions

Large-x, small-Q² corrections

Deuteron corrections

No free neutron! Best proxy: Deuteron

- Parton distributions (to be fitted)
- nuclear wave function (AV18, CD-Bonn, WJC1, ...)
- Off-shell nucleon modification (model dependent)

γ* Bound vs. free proton+neutron k+q1.15 CJ12min quark CJ12mid CJ12max 1.1 H(p,k)Proton or 1.05 neutron р $Q^2 = 100 \text{ GeV}^2$ A_{i} **Nucleus** 0.95 \mathcal{D} 0.2 0.4 0.6 0.8 х Low-energy factorization issues Fermi motion binding • Renorm. of nuclear operators off-shellness Gauge invariance, FSI, ... 13 accardi@jlab.org POETIC 2013

Theoretical

uncertainty

CJ fits: new d quark, nuclear uncertainty

Dramatic increase in d quark with more flexible parametrization

Neglected in all other fits

```
accardi@jlab.org
```

CJ12 fits: nuclear and PDF uncertainty

Large overall reduction in uncertainty with relaxed cuts

accardi@jlab.org

Applications: d/u ratio

Applications: new physics at LHC

Accardi et al., PRD84 (2011) 014008

- Observation of new physics signal requires accurate determination of QCD background
- Uncertainties in large-x PDFs could affect interpretation of experiments searching for new particles

Applications: large mass searches at LHC

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

- Observation of new physics signal requires accurate determination of QCD backgrounds,
- uncertainties in large-x PDFs could affect interpretation of experiments searching for new particles

Example: W' and Z' total cross sections

Beating the experimental uncertainties

At JLab 12

Jlab12 experiment E12-10-002

accardi@jlab.org

POETIC 2013

20

EIC projections

□ MEIC $\sqrt{s} = 31 \text{ GeV}$ (ca. 2010)

accardi@jlab.org

POETIC 2013

21

EIC projections

■ MEIC vs = 31 GeV (ca. 2010)

Pseudo data using CTEQ-JLab "CTEQ6X" fits, L=230 (35) fb⁻¹

[Accardi, Ent, Keppel]

EIC projections

□ MEIC $\sqrt{s} = 31 \text{ GeV}$ (ca. 2010)

Pseudo data using CTEQ-JLab "CTEQ6X" fits, L=230 (35) fb⁻¹

[Accardi, Ent, Keppel]

Impact of a new accelerator - the EIC

Reduction in PDF errors

EIC - gluons: F₁ and jets

Large leverage in $Q^2 \Rightarrow$ reduction in gluon PDF errors

- Driven by scaling violation, some from $\sigma = F_{\tau} + \varepsilon F_{\mu}$
- Interplay with α_s , if this is fitted simultaneously
- DIS jets have different α_s dependence

(will evaluate this,

see V.Radescu for LHeC)

jet

jet 2

jet 1

jet 2

jet 1 مععد

Constraining the theoretical uncertainties

Constraining the nuclear uncertainty

DIS data minimally sensitive to nuclear corrections

- DIS with slow spectator proton (BONUS)
 - Quasi-free neutrons
- DIS with fast spectator (DeepX)
 - Off-shell neutrons
- ³He/³H ratios

Data on free (anti)protons, sensitive to d

- e+p: parity-violating DIS **HERA** (e^++p vs. e^-+p)
- v+p, v+p (no experiment in sight)
- *p+p, p+p* at large positive rapidity
 - W charge asymmetry, Z rapidity distribution

Cross-check data

- *p+d* at large <u>negative</u> rapidity dileptons; *W*, *Z*
- Sensitive to nuclear corrections, cross-checks *e*+*d* AFTER@LHC
 POETIC 2013

Jlab12, EIC

Tevatron: D0, CDF?? LHCb?? RHIC AFTER@LHC

RHIC??

27

Use protons to study nuclei (!)

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

Needs to be corroborated:

- W, Z at RHIC, Z (and W?) at LHC, W at DØ (??)

```
PVDIS at JLab 12, CC @ EIC
```

accardi@jlab.org

W charge asymmetry (p+p / p+pbar collisions)

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

29

Spectator tagging at Jlab: quasi-free neutrons

N.Baillie et al., PRL 108 (2012) 199902

Spectator tagging at JLab12

- Neutron off-shellness depends on on spectator momentum:
 - Slow: nearly on-shell (BONUS12)
 - Fast: more and more off-shell (LAD)

1

Spectator tagging at EIC: even better!

- measure neutron F₂ in D target
 - flavor separation

- measure proton F, in D target
 - Unique at colliders
 - Compare off-shell to free proton

proton, neutron in light nuclei

embedding in nuclear matter
 (a piece of the EMC puzzle)

From deuterons to nuclei

Nuclear to Deuteron ratio

Impact of the EIC

Accardi, Guzey, Rojo, INT report

- **e+A collisions** using NNPDF2.0 fits
 - QCD fit to EIC pseudo-data for <u>Pb only</u>
 - Assume energy scan
 L=4 fb⁻¹ per energy setting
 0.04 < y < 0.8
 - √s = 12, 17, 24, 32, 44 GeV
 (medium energy EIC stage I)
 - $-\sqrt{s} = 63, 88, 124 \text{ GeV}$ (full energy EIC – stage II)

Impact of the EIC

Accardi, Guzey, Rojo, INT report

- e+A collisions using NNPDF2.0 fits
 - With only 1 nucleus target, impact comparable to present day world data; <u>small and large x</u>

accardi@jlab.org

Gluons in nuclei - large x

Next to nothing known about large-x nuclear gluons

- Easily as revolutionary as quark EMC effect 30 years ago
- In fact, indications that "anti-shadowing" resides in longitudinal

Needs

Guzey et al., PRC86 (2012) 045201

- Dedicated nuclear L/T separation at JLab 12 GeV
- Energy scan at EIC

Gluons in nuclei - small x

Can EIC detect (the approach) saturation as deviation from DGLAP?

Accardi, Guzey, Rojo, INT report

and refit

 $= Q_c^2 x^{-1/3}$

- Cut data in saturation region $Q^2 < Q_0^2 \left(rac{x_0}{r}
 ight)^{1/3} A^{1/3}$
- Systematic downward shift
- Signal of saturation (marginal in stage I ?)
- Needs detailed study of statistical significance

Gluons in nuclei - the science matrix

Accardi, Lamont, Marquet, INT report

Deliverables	Observables	What we learn	Phase-I	Phase-II
integrated gluon	$F_{2,L}$	nuclear wave.fn.;	gluons at	explore sat.
distributions		saturation, Q_s	$10^{-3} \lesssim x \lesssim 1$	regime
k_T -dep. gluons;	di-hadron	non-linear QCD	onset of	RG evolution
gluon correlations	correlations	evolution/universality	saturation; Q_s	
			-	
integrated gluon	$F_{2,L}^c, F_{2,L}^D$	nuclear w.fn.;	early sat. onset	saturation
distributions		saturation, Q_s	challenge to measure	regime
flavour separated	charged current	EMC effect origin	full q_i separation	larger Q^2 ,
nuclear PDFs	& γZ str. fns.		at $0.01 \lesssim x \lesssim 1$	smaller x

Good performance also at large x; similar for protons:

 \Rightarrow don't forget intrinsic charm \bigcirc

Summary: the next 20 years

Global fits: new avenue to study nuclear physics with proton targets

Deuteron corrections, EMC effect theory

The next 10 years: pushing the envelope of existing machines

- High-precision large-x quarks need fixed target DIS(D) statistics
- Theory nuclear systematics will be minimized using proton data
 - W,Z at RHIC, Tevatron, LHC; tagging, PVDIS, ³He/³H ratio at JLab12
- Start exploiting p vs. large A for understanding EMC effect
- Revisit intrinsic charm fits

10-20 years from now

- EIC and/or LHeC likely to allow deuteron-free large-x PDF fits
 - CC DIS, jets, charm tagging on proton targets
- High precision forward physics at LHC (AFTER@LHC, ...)
- Use high precision p data to study nuclei in detail

Backup slides

Small x gluons at colliders: hadronic structure

Gluon spin at small x at RHIC requires particle production at large y

```
\sigma(\vec{p}\vec{p} \to \pi^0 X) \propto \Delta q(x_1) \Delta g(x_2) \hat{\sigma}^{qg \to qg} D_q^{\pi^0}(z)
```


Precise large-*x* PDFs needed:

to measure smallest-x gluon helicity

d/u quark ratio particularly sensitive to quark dynamics in nucleon

SU(6) spin-flavor symmetry

proton wave function

□ *d*/*u* quark ratio particularly sensitive to quark dynamics in nucleon

SU(6) spin-flavor symmetry

proton wave function

$$p^{\uparrow} = -\frac{1}{3}d^{\uparrow}(uu)_{1} - \frac{\sqrt{2}}{3}d^{\downarrow}(uu)_{1} + \frac{\sqrt{2}}{6}u^{\uparrow}(ud)_{1} - \frac{1}{3}u^{\downarrow}(ud)_{1} + \frac{1}{\sqrt{2}}u^{\uparrow}(ud)_{0}$$

 $-50\% (qq)_{1}50\% (qq)_{0}$, u = 2d at all x

$$\frac{d}{u} = \frac{1}{2} \implies \frac{F_2^n}{F_2^p} = \frac{2}{3}$$

Broken SU(6) : scalar diquark dominance

- $-M_{\Lambda} > M_{N} \implies (qq)_{1}$ has larger energy than $(qq)_{0}$
- But only *u* quark couples to scalar diquark:

$$\frac{d}{u} \to 0 \implies \frac{F_2^n}{F_2^p} \to \frac{1}{4}$$

Feynman 1972, Close 1973 Close/Thomas 1988

Broken SU(6) : hard gluon exchange

helicity of struck quark = helicity of struck hadron —

Farrar, Jackson, 1975

Global QCD fits of Parton Distribution Functions

Nuclear corrections - theoretical uncertainty

Nuclear corrections - theoretical uncertainty

accardi@jlab.org

POETIC 2013

48

Nuclear corrections

$$F_{2d}(x_B, Q^2) = \int_{x_B}^{A} dy \, \mathcal{S}_A(y, \gamma) F_2^{TMC+HT}(x_B/y, Q^2) \left(1 + \frac{\delta^{off} F_2(x)}{F_2(x)}\right)$$

- Using off-shell model, obtains larger neutron (larger d) than light-cone model
- But smaller *neutron* (larger *d*) than no nuclear effects or density model

d/u ratio: CJ12 vs. others

Owens, Accardi, Melnitchouk, arXiv:1212.1702

accardi@jlab.org

The mKP off-shell nucleon model

Accardi et al. PRD 84, 014008 (2011)

Nucleon at large x = valence quark + spectator diquark

Quark spectral function, with spectator diquark

$$D_{q/N} \approx \delta(s - s_0) \Phi(k^2, \Lambda(p^2))$$
 [s₀ = 2.1 GeV² from fits]
Cutoff scale

– Physical interpretation: nucleon size changes with p^2 : $R_N \sim 1/\Lambda$

The mKP off-shell nucleon model

Accardi et al. PRD 84, 014008 (2011)

Expand $F_2(N)$ to first order in virtuality:

$$F_2^N(x,Q^2,p^2) = F_2^N(x,Q^2) \left(1 + \delta f_2(x,Q^2) \frac{p^2 - M^2}{M^2}\right)$$

In the mKP model

$$\delta f_2 = c + \frac{\partial \log q_v}{\partial x} x(1-x) \frac{(1-\lambda)(1-x)M^2 + \lambda s_0}{(1-x)^2 M^2 - s_0}$$

- Only 1 free parameter

$$\begin{split} \lambda &= \partial \log \Lambda^2 / \partial \log p^2 \big|_{p^2 = M^2} = -2 (\delta R_N / R_N) (\delta p^2 / M^2) \\ \text{Physical interpretation:} & \delta p^2 = \langle p^2 - M^2 \rangle \\ \text{nucleon size changes with } p^2 : R_N \sim 1 / \Lambda & \int d^4 p (p^2 - M^2) \mathcal{S}_d(y) \\ \text{accardi@jlab.org} & \text{POETIC 2013} & \int d^4 p (p^2 - M^2) \mathcal{S}_d(y) \\ \end{bmatrix}$$

W charge asymmetry at Tevatron

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

From decay lepton $W \rightarrow I+v$: **Directly reconstructed W:** \succ highest sensitivity to large x \triangleright smearing in x 0.4 Tevatron + CDF Data 0.2 0.8 Tevatron 0.6 0 0.4 -0.2 Frank Burn 0.2 D0 Data -0.4 CJ (max nuclear) CJ (min nuclear) 0 -0.6 2 3 0 2 0 3 y_W η sensitive to Can constrain Nuclear models! d at high x

Too little large-x sensitivity in lepton asymmetry:

– need reconstructed W

accardi@jlab.org

W charge asymmetry at LHC

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

Would be nice to reconstruct W at LHCb

- Definitely needs more statistics
- Is it at all possible?? (too many holes in detector?)
- Systematics in W reconstruction?
- What about RHIC, AFTER@LHC?

accardi@jlab.org

Z rapidity distribution

Brady, Accardi, Melnitchouk, Owens, JHEP 1206 (2012) 019

Direct Z reconstruction is unambiguous in principle, but:

- Needs better than 5-10% precision at large rapidity
- Experimentally achievable?
 - At LHCb? RHIC? AFTER@LHC?
 - Was full data set used at Tevatron?