The Nucleon Spin Sum

Matthias Burkardt

New Mexico State University

March 5, 2013

Outline

- Generalized parton distributions (GPDs)
- \hookrightarrow 'transverse imaging'
 - Chromodynamic lensing and \perp single-spin asymmetries (SSA)

transverse distortion of PDFs + final state interactions

- \hookrightarrow SSA in $\gamma N \longrightarrow \pi + X$
 - quark-gluon correlations $\rightarrow \perp$ force on q in DIS
 - $\mathcal{L}_{JM}^q L_{Ji}^q \leftrightarrow \text{torque due to FSI in DIS}$
 - Summary

'pizza tre stagioni'

Deeply Virtual Compton Scattering (DVCS)

- virtual Compton scattering: $\gamma^* p \longrightarrow \gamma p$ (actually: $e^- p \longrightarrow e^- \gamma p$)
- 'deeply': $-q_{\gamma}^2 \gg M_p^2$, $|t| \longrightarrow$ Compton amplitude dominated by (coherent superposition of) Compton scattering off single quarks
- \hookrightarrow only difference between form factor (a) and DVCS amplitude (b) is replacement of photon vertex by two photon vertices connected by quark (energy denominator depends on quark momentum fraction x)
- \hookrightarrow DVCS amplitude provides access to momentum-decomposition of form factor = Generalized Parton Distribution (GPDs).

4

unpolarized proton

- $q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H(x, 0, -\mathbf{\Delta}_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}}$
- x = momentum fraction of the quark
- $\vec{b} = \bot$ distance of quark from \bot center of momentum
- small x: large 'meson cloud'
- larger x: compact 'valence core'
- $x \to 1$: active quark becomes center of momentum
- $\hookrightarrow \vec{b}_{\perp} \to 0$ (narrow distribution) for $x \to 1$

MB, Int. J. Mod. Phys. A18, 173 (2002)

6

sign & magnitude of the average shift

model-independently related to p/n anomalous magnetic moments:

$$\begin{aligned} \langle b_y^q \rangle &\equiv \int dx \int d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

sign & magnitude of the average shift

6

model-independently related to p/n anomalous magnetic moments:

$$\begin{aligned} b_y^d \rangle &\equiv \int dx \int d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

$$\begin{split} \kappa^p &= 1.913 = \frac{2}{3}\kappa_u^p - \frac{1}{3}\kappa_d^p + \dots \\ \bullet \ u \text{-quarks:} \ \kappa_u^p &= 2\kappa_p + \kappa_n = 1.673 \\ \hookrightarrow \text{ shift in } + \hat{y} \text{ direction} \\ \bullet \ d \text{-quarks:} \ \kappa_d^p &= 2\kappa_n + \kappa_p = -2.033 \\ \hookrightarrow \text{ shift in } -\hat{y} \text{ direction} \end{split}$$

!!!!!

• $\langle b_{y}^{q} \rangle = \mathcal{O}(\pm 0.2 fm)$

sign & magnitude of the average shift

model-independently related to p/n anomalous magnetic moments:

$$\begin{aligned} b_y^q \rangle &\equiv \int \! dx \int \! d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int \! dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

anomalous gravito-magnetic moment = 0

- $\sum_{i \in q,g} \int dx \, x E_i(x,0,0) = 0 \ (\rightarrow$ Brodsky et el.)
- physics: \perp CoM of \perp pol. nucleon does not shift
- appears to be almost saturated by u & d only!

$$\rightarrow \int dx \, x E_g(x,0,0) \stackrel{?}{\approx} 0 \text{ (Brodsky \& Gardner)}$$

- DGLAP: CoM conserved
- \hookrightarrow expect $\int dx \, x E(x, 0, 0) \approx 0$ for sea quarks produced in evolution

Angular Momentum Carried by Quarks

transverse images \leftrightarrow Ji relation for quark angular momentum:

- $J_q^x = m_N \int dx \, x r^y q(x, \mathbf{r}_\perp)$ with $b^y = r^y \frac{1}{2m_N}$, where $q(x, \mathbf{r}_\perp)$ is distribution relative to CoM of whole nucleon
- recall: $q(x, \mathbf{b}_{\perp})$ for nucleon polarized in $+\hat{x}$ direction

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

$$\Rightarrow J_q^x = M_N \int dx \, x r^y q(x, \mathbf{r}_\perp) = \int dx \, x \left(m_N b^y + \frac{1}{2} \right) q(x, \mathbf{r}_\perp)$$
$$= \frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$$

- X.Ji(1996): rotational invariance \Rightarrow apply to all components of \vec{J}_q
- partonic interpretation exists only for \perp components (MB 2005)!

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign 'determined' by $\kappa_u \& \kappa_d$ (M.B.; I.Schmidt; A.Metz; L.Gamberg;...)
- attractive FSI deflects active quark towards the CoM

 \Rightarrow

 \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction \rightarrow 'chromodynamic lensing'

 $\kappa_p, \kappa_n \quad \longleftrightarrow \quad \text{sign of SSA!!!!!!!} \quad \text{MB, PRD 69, 074032 (2004)}$

• confirmed by HERMES (and recent COMPASS) p data; consistent with vanishing isoscalar Sivers (COMPASS)

higher twist in polarized DIS

•
$$\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$$

•
$$g_1 = \frac{1}{2} \sum_q e_q^2 g_1^q$$
 with $g_1^q = q^{\uparrow}(x) + \bar{q}^{\uparrow}(x) - q^{\downarrow}(x) - \bar{q}^{\downarrow}(x)$

• g_2 involves quark-gluon correlations

 \hookrightarrow no parton interpret. as difference between number densities for g_2

• for \perp pol. target, $g_1 \& g_2$ contribute equally

$$\sigma_{LT} \propto g_T \equiv g_1 + g_2$$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

What can we learn from g_2 ?

•
$$g_2 = g_2^{WW} + \bar{g}_2$$
 with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x$$

$$d_{2} \equiv 3 \int dx \, x^{2} \bar{g}_{2}(x) = \frac{1}{2MP^{+2}S^{x}} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \right\rangle$$

color Lorentz force

MB 2008

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

color Lorentz force

$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y \text{ for } \vec{v} = (0, 0, -1)$

 \hookrightarrow $d_2 \leftrightarrow$ average **color Lorentz force** acting on quark moving with v = c in $-\hat{z}$ direction in the instant after being struck by γ^*

$$\langle F^{y} \rangle = -2M^{2}d_{2} = -\frac{M}{P^{+2}S^{x}} \langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \rangle$$

cf. Qiu-Sterman matrix element $\langle k_{\perp}^y\rangle\equiv\int_0^1 dx \int\!\!\mathrm{d}^2k_{\perp}\,k_{\perp}^2f_{1T}^{\perp}(x,k_{\perp}^2)$

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity

matrix element defining d_2

$$\leftrightarrow$$

 1^{st} integration point in QS-integral

MB 2008

$$d_{2} \equiv 3 \int dx \, x^{2} \bar{g}_{2}(x) = \frac{1}{2MP^{+2}S^{x}} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \right\rangle$$

color Lorentz force

MB 2008

$$\sqrt{2}G^{+y} = G^{0y} + G^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

 $\hookrightarrow d_2 \leftrightarrow$ average **color Lorentz force** acting on quark moving with v = c in $-\hat{z}$ direction in the instant after being struck by γ^*

$$\langle F^{y} \rangle = -2M^{2}d_{2} = -\frac{M}{P^{+2}S^{x}} \langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^{+}q(0) \right| P, S \rangle$$

sign of $d_2 \leftrightarrow \perp$ imaging

- $\kappa_q/p \longrightarrow \text{sign of deformation}$
- \hookrightarrow direction of average force
- $\hookrightarrow \ d_2^u > 0, \ d_2^d < 0$
 - $\bullet \ cf. \ f_{1T}^{\perp u} < 0, \ f_{1T}^{\perp u} < 0$

lattice (Göckeler et al., 2005)

 $d_2^u\approx 0.010,\, d_2^d\approx -0.0056$

magnitude of d_2

•
$$\langle F^y \rangle = -2M^2 d_2 = -10 \frac{GeV}{fm} d_2$$

• expect partial cancellation of forces in SSA

$$\hookrightarrow |\langle F^y \rangle| \ll \sigma \approx 1 \frac{GeV}{fm}$$

$$\hookrightarrow d_2 = \mathcal{O}(0.01)$$

Angular Momentum Carried by Quarks

transverse images \leftrightarrow Ji relation for quark angular momentum:

- $J_q^x = m_N \int dx \, x r^y q(x, \mathbf{r}_\perp)$ with $b^y = r^y \frac{1}{2m_N}$, where $q(x, \mathbf{r}_\perp)$ is distribution relative to CoM of whole nucleon
- recall: $q(x, \mathbf{b}_{\perp})$ for nucleon polarized in $+\hat{x}$ direction

$$q(x, \mathbf{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} - \frac{1}{2M_N} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x, 0, -\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}}$$

$$\Rightarrow J_q^x = M_N \int dx \, x r^y q(x, \mathbf{r}_\perp) = \int dx \, x \left(m_N b^y + \frac{1}{2} \right) q(x, \mathbf{r}_\perp)$$
$$= \frac{1}{2} \int dx \, x \left[H(x, 0, 0) + E(x, 0, 0) \right]$$

- X.Ji(1996): rotational invariance \Rightarrow apply to all components of \vec{J}_q
- partonic interpretation exists only for \perp components (MB 2005)!

The Nucleon Spin Pizzas

13

The Nucleon Spin Pizzas

Ji decomposition

$$\frac{1}{2} = \sum_{q} \frac{1}{2}\Delta q + \boldsymbol{L}_{\boldsymbol{q}} + J_{g}$$

$$\begin{split} &\frac{1}{2}\Delta q = \frac{1}{2} \int\! d^3x \, \langle P, S | \, q^{\dagger}(\vec{x}) \Sigma^3 q(\vec{x}) \, | P, S \rangle \\ &L_q \!=\! \int\! d^3x \, \langle P, S | \, q^{\dagger}(\vec{x}) \! \left(\vec{x} \times i \vec{D} \right) \! \stackrel{3}{q} \! \left(\vec{x} \right) | P, S \rangle \\ &J_g = \int\! d^3x \, \langle P, S | \left[\vec{x} \times \! \left(\vec{E} \times \vec{B} \right) \right]^3 | P, S \rangle \\ &\bullet \ i \vec{D} = i \vec{\partial} - g \vec{A} \end{split}$$

Jaffe-Manohar decomposition

light-cone framework & gauge $A^+ = 0$

$$\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$$

$$\begin{split} & \mathcal{L}_{q} = \int \! d^{3}r \langle P,\!S | \, \bar{q}(\vec{r}) \gamma^{+}\!\! \left(\vec{r} \times i\vec{\partial}\right)^{z}\!\! \left(\vec{r}\right) | P,\!S \rangle \\ & \Delta G \!=\! \varepsilon^{+-ij} \! \int \! d^{3}r \, \langle P,S | \, \mathrm{Tr} F^{+i} A^{j} \, | P,S \rangle \\ & \mathcal{L}_{g} \!=\! 2 \! \int \! d^{3}r \langle P,\!S | \, \mathrm{Tr} F^{+j}\! \left(\vec{x} \times i\vec{\partial}\right)^{z}\!\! A^{j} | P,\!S \rangle \\ & \text{manifestly gauge invariant definitions} \\ & \text{for each term exist} \end{split}$$

• GPDs
$$\longrightarrow L^q$$

•
$$\overrightarrow{p} \overrightarrow{p} \longrightarrow \Delta G \longrightarrow \mathcal{L} \equiv \sum_{i \in q, g} \mathcal{L}^i$$

- $L^q \neq \mathcal{L}^q$ [QED: M.B. + Hikmat BC, PRD **79**, 071501 (2009)]
- $\mathcal{L}^q L^q = ?$
 - can we calculate/predict the difference?
 - what does it represent?

OAM from Wigner Functions

Wigner Functions (Belitsky, Ji, Yuan; Metz et al.)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+q(\xi)|PS\rangle.$$

 $\bullet~({\rm quasi})$ probabilty distribution for ${\bf b}_\perp$ and ${\bf k}_\perp$

•
$$f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

•
$$q(x, \mathbf{b}_{\perp}) = \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$$

OAM from Wigner (Lorcé et al.)

$$L_{z} = \int dx \int d^{2} \mathbf{b}_{\perp} \int d^{2} \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_{x} k_{y} - b_{y} k_{x})$$
$$= \int d^{3} r \langle P, S | \bar{q}(\vec{r}) \gamma^{+} (\vec{r} \times i\vec{\partial})^{z} q(\vec{r}) | P, S \rangle = \mathcal{L}^{q}$$

Gauge Invariance?

need to include Wilson-line gauge link to connect 0 and ξ (Ji, Yuan; Hatta)

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$\begin{split} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) &\equiv \int \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^3} e^{ik \cdot \xi} e^{-i\vec{q}_{\perp} \cdot \vec{b}_{\perp}} \langle P'S' | \bar{q}(0) \gamma^+ \mathcal{U}_{0\xi} q(\xi) | PS \rangle. \\ \langle \vec{k}_{\perp} \rangle &\equiv \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) \vec{k}_{\perp} \text{ depends on choice of path!} \end{split}$$

Quark \perp momentum from Wigner Distributions 16

difference $\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle$

$$\langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x})] q(\vec{x}) | P, S \rangle$$

$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$$

straight-line gauge link

$$\langle \vec{k}_{\perp} \rangle = \langle P, S | \bar{q}(\vec{x}) \gamma^{+} i \vec{D} q(\vec{x}) | P, S \rangle$$

•
$$iD = i\partial - gA(\vec{x})$$

•
$$\langle \vec{k}_{\perp} \rangle = 0$$
 (T-odd !)

light-cone staple

$$\overbrace{\xi_{\perp}}^{q(\xi^-,\xi_{\perp})} \xrightarrow{(\infty^-,\xi_{\perp})}_{(\sigma^-,0_{\perp})} \xrightarrow{(\infty^-,0_{\perp})}$$
• correct choice for \mathbf{k}_{\perp} distributions
relevant for SIDIS
 $\langle \vec{\mathcal{K}}_{\perp} \rangle = \langle P,S | \bar{q}(\vec{x}) \gamma^+ i \vec{\mathcal{D}} q(\vec{x}) | P,S \rangle$
• $i \vec{\mathcal{D}} = i \vec{\partial} - g \vec{A} (x^- = \infty, \mathbf{x}_{\perp}) \quad A^+ = 0$
• $\langle \vec{\mathcal{K}}_{\perp} \rangle \neq 0$ (FSI! Brodsky,Hwang,Schmidt)

Quark \perp momentum from Wigner Distributions 16

difference $\langle \vec{\mathcal{K}}_{\perp}^q \rangle - \langle \vec{k}_{\perp}^q \rangle$

$$\begin{array}{l} \langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x})] q(\vec{x}) | P, S \rangle \\ \mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \end{array}$$

color Lorentz Force acting on ejected quark (Qiu, Sterman)

ξı

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

Impulse due to FSI

$$\begin{split} \Delta \vec{k}_{\perp}^{q} &\equiv \langle \vec{\mathcal{K}}_{\perp}^{q} \rangle - \langle \vec{k}_{\perp}^{q} \rangle \\ &= (\text{average}) \text{ change in } \bot \\ \text{momentum due to FSI!} \end{split}$$

straight-line gauge link

$$\langle \vec{k}_{\perp} \rangle = \langle P, S | \bar{q}(\vec{x}) \gamma^{+} i \vec{D} q(\vec{x}) | P, S \rangle$$

•
$$iD = i0 - gA(x)$$

• $\langle \vec{k}_{\perp} \rangle = 0$ (T-odd !)

light-cone staple

• correct choice for \mathbf{k}_{\perp} distributions relevant for SIDIS

$$\vec{\mathcal{K}}_{\perp}\rangle = \langle P, S | \bar{q}(\vec{x}) \gamma^{+} i \vec{\mathcal{D}} q(\vec{x}) | P, S \rangle$$

•
$$i\vec{\mathcal{D}} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$$
 $A^+ = 0$

• $\langle \vec{\mathcal{K}}_{\perp} \rangle \neq 0$ (FSI! Brodsky,Hwang,Schmidt)

OAM from Wigner Functions

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2 \vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^3} e^{ik \cdot \xi} e^{-i\vec{q}_{\perp} \cdot \vec{b}_{\perp}} \langle P'S' | \bar{q}(0) \gamma^+ \mathcal{U}_{0\xi} q(\xi) | PS \rangle$$

W and thus $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$ may depend on choice of path!

straight line (Ji et al.)

straigth Wilson line from 0 to ξ yields $L^{q} = \int d^{3}x \langle P, S | q^{\dagger}(\vec{x}) \left(\vec{x} \times i \vec{D} \right)_{q}^{3}(\vec{x}) | P, S \rangle$

•
$$i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x})$$

- same as Ji-OAM
- $f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$ not the TMDs relevant for SIDIS (missing FSI!)

OAM from Wigner Functions

Wigner Functions with gauge link $\mathcal{U}_{0\xi}$ (Ji, Yuan; Hatta)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2\vec{q}_{\perp}}{(2\pi)^2} \int \frac{d^2\xi_{\perp}d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{q}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S'|\bar{q}(0)\gamma^+ \mathcal{U}_{0\xi}q(\xi)|PS\rangle$$

W and thus $L_z = \int dx \int d^2 \mathbf{b}_{\perp} \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp}) (b_x k_y - b_y k_x)$ may depend on choice of path!

Light-Cone Staple for $\mathcal{U}_{0\epsilon}^{\pm LC}$ (Hatta)

- want Wigner function that yields TMDs relevant for SIDIS when integrated $d^2\mathbf{b}_{\perp}$
- $\begin{array}{l} \hookrightarrow \text{ path for gauge link } \longrightarrow \\ \text{'light-cone staple'} \longrightarrow \mathcal{U}_{0\xi}^{+LC} \end{array}$

$$\mathcal{L}^{q}_{+} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left(\vec{x} \times i \vec{\mathcal{D}} \right)^{3}_{q}(\vec{x}) | P, S \rangle$$

•
$$i\vec{\mathcal{D}} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$$

• staple at
$$x^- = -\infty$$
 \mathcal{L}^q_-

•
$$\mathrm{PT} \Rightarrow \mathcal{L}_{-}^{q} = \mathcal{L}_{+}^{q} = \mathcal{L}^{q}$$

•
$$A_{\perp}(\infty, \mathbf{x}_{\perp}) = -A_{\perp}(-\infty, \mathbf{x}_{\perp}) \Rightarrow \mathcal{L}^{q}_{+} = \mathcal{L}^{q}_{JM}$$

 \hookrightarrow link at $x^- = \pm \infty$ no role for OAM!

 \hookrightarrow manifestly gauge invariant definition for \mathcal{L}_{JM}^q

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ • $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$

difference $\mathcal{L}^q - L^q$

$$\begin{aligned} \mathcal{L}^q - L^q &= -g \int d^3 x \langle P, S | \bar{q}(\vec{x}) \gamma^+ [\vec{x} \times (\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}))]^z q(\vec{x}) | P, S \rangle \\ \mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) &= \int_{x^-}^{\infty} dr^- F^{+\perp}(r^-, \mathbf{x}_{\perp}) \end{aligned}$$

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$$

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ • $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times (\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}))]^{z} q(\vec{x}) | P, S \rangle$$

$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $L_q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ $\mathcal{L}^q = \int d^3x \langle P, S | \bar{q}(\vec{x}) \gamma^+ (\vec{x} \times i\vec{D}) \ddot{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ • $i\vec{D} = i\vec{\partial} - g\vec{A}(x^- = \infty, \mathbf{x}_\perp)$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} [\vec{x} \times (\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}))]^{z} q(\vec{x}) | P, S \rangle$$

$$\mathbf{A}_{\perp}(\infty, \mathbf{x}_{\perp}) - \mathbf{A}_{\perp}(\vec{x}) = \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp})$$

color Lorentz Force acting on ejected quark (MB: arXiv:08103589)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

Torque along the trajectory of q

$$T^z = \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^z$$

Change in OAM

$$\Delta L^{z} = \int_{x^{-}}^{\infty} dr^{-} \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^{z}$$

19

Summary

- Deeply Virtual Compton Scattering \longrightarrow GPDs
- \hookrightarrow impact parameter dependent PDFs $q(x,\mathbf{b}_{\perp})$
 - $E^q(x, 0, -\Delta_{\perp}^2) \leftrightarrow \kappa_{q/p}$ (contribution from quark flavor q to anomalous magnetic moment)
 - $E^q(x, 0, -\Delta_{\perp}^2) \longrightarrow \perp$ deformation of PDFs for \perp polarized target
 - parton interpretation for Ji-relation
 - higher-twist $(\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x)) \leftrightarrow \bot$ force in DIS
 - \perp deformation \leftrightarrow (sign of) quark-gluon correlations $(\int dx \, x^2 \bar{g}_2(x), \int dx \, x^2 \bar{e}(x))$
 - $\mathcal{L}_{JM}^q L_{Ji}^q = \Delta L_{FSI}$ change in OAM of ejected quark due to FSI

combine complementary information from deeply-virtual Compton scattering, semi-includive DIS & Drell-Yan to study orbital angular momentum and map the 3-d structure of hadrons

20

Deeply Virtual Compton Scattering (DVCS)

 Q^2 scaling for Compton form factor (JLab)

The Nucleon Spin Pizzas

scalar diquark model

- LC wave functions $\psi^S_s(x,{\bf k}_{\perp})$
- $\hookrightarrow \mathcal{L}_q \text{ from } |\psi_s^S(x,\mathbf{k}_\perp)|^2$
 - GPDs from overlap integrals of $\psi^{\dagger}\psi$
- $\hookrightarrow L_q$ from Ji
 - $L_q = \mathcal{L}_q$. No surprise since $L_q - \mathcal{L}_q \sim \langle q^{\dagger} \vec{r} \times \vec{A} q \rangle$ and no \vec{A} in scalar diquark model

• $L_q(x) \neq \mathcal{L}_q(x)$

scalar diquark model

- interpretation of $J_q(x) \equiv \frac{x}{2} [q(x) + E^q(x, 0, 0)]$ <u>not</u> that of distribution of AM in x
- FT of $J(t) \equiv \frac{x}{2} \left[q(x) + E^q(x, 0, 0) \right]$ <u>not</u> distribution of J_q^z in \mathbf{b}_{\perp}

M.B. + Hikmat BC, PRD **79**, 071501 (2009)

QED for dressed e^- in QED

- LC wave functions $\psi^S_{sh}(x,{\bf k}_\perp)$
- $\hookrightarrow \mathcal{L}_q \text{ from } |\psi^S_{sh}(x,\mathbf{k}_\perp)|^2$
 - GPDs from overlap integrals of $\psi^{\dagger}\psi$

$$\hookrightarrow L_q$$
 from Ji

• $\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$