

Status of the magnets for ELENA

Daniel Schoerling AD-User/ELENA Meeting 20th November 2012 – 16:40 - 17:10 Room 37-R-022

Daniel Schoerling

2006	First contact of TE-MSC-MNC with ELENA project	
2007	Preliminary magnet design by T. Zickler; summarized in EDMS: 823968	
2010-2011	Updated conceptual magnet design by A. Vorozhtsov; summarized in EDMS: 1164537	
12/2011 – to date	Further refinements & design: Refinement of magnetic de and field quality requirements, design of prototype magnet discussion on procurement of material, prototype and magnets; see EDMS documents: 1178055, 1208752, 12209 1225966, 1231755, 1240824, 1240830, 1240832, 1247757 CDD: AD_MBHEK%	esign et, 958, 7;
	Focus on technically most challenging magnet type: ELENA bending magnet	7
	Design adaptation will be required after decision on final lattice, aperture and beam instrumentation	
Daniel Sc	erling TE-MSC-MNC	

- 49 magnets (incl. spare) of 8 types
- Normal-conducting magnets
- Water and air (convection) cooled
- Mostly iron-dominated; laminated yokes
- Cooling designed for DC operation at maximum field

Daniel Schoerling

A.I Scope of work package: Overview

RING	Number of magnets	Number of magnets [mm] [mm] in GFR		Field error in GFR	length/ Mechanical Field strength length(*), [m]		Maximal pole field [T] including margin	Remarks
Bending magnet	6+1 B- Train +1 spare	100	66(H)x48 (V)	±2·10 ⁻⁴	0.97/1.19	0.05-0 241	0.36 (0.42)	Schottky pick-up
Quadrupole	12+1 spare	Ø111	Ø54	±5·10 ⁻⁴	0.25/0.34	0.035-1.1 T/m	0.050 (0.066)	BPMs installed
Sextupole	4+1 spare	Ø91	Ø43	±2·10 ⁻³	0.15/016	0.12-22 T/m ²	0.023 (0.034)	No instrumentation
H/V corrector	8+1 spare	Ø111	Ø43	<1%	R 31/0.20	6×10⁻³ Tm (integrated)	0.04 (no margin)	BPMs installed
Skew quadrupole	2+1 spare	Ø91	Ø40	<192	0.15/0.16	0.2 T/m	0.009 (0.018)	No instrumentation
Solenoid	2+1 spare	TBD	Ø38	±3.10-4	0.41/0.46	0.02 T	0.02 (0.04)	BPMs installed
* Preliminary value	es, final mechan	ical length can	be determine	only after detail	ed mechanical des	sign study		
τι	Number of magnets	Aperture [mm]	GENPINI	Field error in GFR	Magnetic length [m]	Field strength	Pole field [T]	Remarks
Bending magnet	3+1 spare	71	45x40	±5·10 ⁻⁴	0.55	0.32 T	0.32	No instrumentation
Quadrupole	2+1 spare	Ø71	Ø50	±1·10 ⁻³	0.40	1 T/m	0.036	No instrumentation
H/V corrector	1 (same type as for ring)	Ø111	Ø43	<1%	0.31	6×10 ⁻³ Tm (integrated)	0.04	No instrumentation

Magnetic

Daniel Schoerling

ELENA

A.I Scope of work package: Parameter

ELENA Dipole Bending Magnets

Parameter	Value
Number	6 + 1 (Reference) + 1 (Spare)
Field	0.37 T (0.42 T) to 0.05 T
Pole iron gap	100 mm
Bending angle	60°
Radius	927 mm
Magnetic length	970 mm
Edge angle	18°
Ramping speed (up)	0.37 T/s
Ramping speed (down)	0.04 T/s
Good field region	±2·10 ⁻⁴ , 66 mm (H) x 48 mm (V)

ELENA

Daniel Schoerling

Prototype phase

Design phase

Procurement &

CERN
M

Electro-magnetic design of prototype Choice of materials Mechanical design of prototype Manufacturing of yoke In-house manufacturing of coils Assembly & integration of vacuum chamber Magnetic measurement of prototype Prototype Report 🌍 Functional Specification (final parameters) Design Report 🐋 Engineering Specification 🔧 Technical Specification 🕋 Tendering & Contract Award nstallation (Danish in-kind contribution expected) Contract follow-up Magnetic measurements at CERN Installation

- Prototype design completed
- Early corrective actions possible
- Final parameters for transfer line and ring are under discussion

Support from collaborators in all these steps is highly appreciated, so please do not hesitate to contact us if you are interested in joining the ELENA magnet team

Daniel Schoerling

A.II Acceptance criteria: Field Quality

Name	Number of available segments	Measurement radius (mm)	Outer diameter shaft + support tube(mm)
LHC dipole	several	17	45
QIMM small	2	17	53
QIMM large	2	27	73
MQXC	1	45	106

- Commonly accepted field quality definition for straight magnets available
- High precision measurement equippment available at CERN

L. Walckiers, in Proceedings of the CAS-CERN Accelerator School: Magnets, Bruges, Belgium, 16-25 June 2009, edited by D. Brandt, CERN-2012-004, pp357-386

Daniel Schoerling

A.II Acceptance criteria: Field Quality

ELENA Dipole Magnet

- Field quality evaluation with tracking code
- Hall probe mapping and flux
 meter measurements forseen

Daniel Schoerling

A.III Dipole Prototype: Scope & Purpose

Challenge

• Excellent field quality is requested at very low field

Solution

 Dilution of electrical steel with non-magnetic stainless steel to increase the magnetic induction in the iron and avoid working in the highly nonlinear area of the BH-curve

Ideas to be tested with prototype

- Production process of a magnetic yoke diluted with stainless steel plates
- Field quality of such a yoke
- Choice of soft magnetic steel
- Hysteresis effects
- Mechanical deformations
- Thermal insulation to intercept heat load from backing for activation of NEG coating in the vacuum chamber (use of 7 mm jackets instead of 20 mm thick jackets)
- Cutting of edge angle and resulting cut laminations
- End shim design & general design issues

A.III Prototype: 3D Packing Factor Analysis

Requirements

 Low field magnet (0.4 T- 0.05 T) with a dynamic range of 8

Results

 Intensive simulations have shown that packing is a far-field effect which has no negative impact on the required field quality

Daniel Schoerling

- Different pole profiles were simulated, decision for hyperbolic shape was taken
- Sensitivity analysis shows small influence on field quality of manufacturing errors
- Sextupole component in 2D design was enhanced to reduce effect on integrated field quality
- Due to the small variation of the phase space advance in the bending magnets the integrated field quality is considered much more important than the local field quality
- A quadrupolar component could be easily compensated with the installed quadrupoles

A.III Dipole Prototype: 3D Design

- No edge angles, therefore simple optimization possible
- Sextupolar component in 2D design improves the integrated field quality

Daniel Schoerling

company (offer requested)

- Electrical steels were investigated
 - Fully finished grades: NO30, M270-50A (HP), M330-50A, M330-50A HP, M400-65A, M530-65A, M600-65A, M700-65A, M800-50A, M800-65A
 - Semi-finished electrical steel to minimize the influence of cold-work
 - Grain-oriented electrical steel
 - Amorphous metal , High-silicon electrical steel (6.5% silicon content), NiFe steels, Iron powder
 - Thickness of material
 - Damping of higher harmonics from PC
 - Damping of eddy currents after ramping

To achieve low coercive force, high permeability and high electrical resistivity (low saturation induction not a problem) electrical steel with high silicon content was selected

Electrical Steel	M270-50 A HP
H _c	<40 A/m
μ _r	6500 – 15000 (ln), 2500 – 5000 (Perp.)
Thickness	0.5 mm
Surface	Coated with Rembrandtin Backlack Remisol EB 548

A.III Prototype: Design & Manufacturing

Status

- Drawings are being finalized
- Material ordered and delivered
- Offers received
- Final bonding tests are ongoing
- Delivery time after
 signature: 8 weeks

- Laser-cutting tolerances around 40 μm compared to 20 μm for fine blanking
- Electrical steel is available with bonding varnish on both sides
- Stainless steel is uncoated, best surface is under study
- To activate the bond a pressure of 10 bar and a temperature of 130°C to 180 °C for 2-24 h is required
- Weld 141 is used to weld non-magnetic stripes on the yoke

Daniel Schoerling

B.I Procurement of ELENA magnets

- Departmental requests are issued and approved
 Market Survey documents (Technical Description, Technical Questionnaire, Qualification Criteria) are prepared and the simplified technical auditing was performed
- Positive replies of around 9 companies were received for the market survey and are right now evaluated
 - These procurement regulations do not apply for in-kind collaborations!

In-kind collaborations are still possible and highly appreciated!

B.II Cost Estimate & Spending Profile

	ELENA Bending Magnet	ELENA Quadrupole	ELENA Sextupole	ELENA + TL H/V Correctors	ELENA Skew Quadrupole	ELENA Solenoid	TL Bending Magnet	TL Quadrupole	Unit
	Potentially kind con	[,] Danish in- tribution	CERN budget						
Fixed cost	170.9	86.6	66.0	68.1	57.7	40.0	89.9	61.7	kCHF
Material cost	220.6	9.1	1.6	12.8	1.1	4.2	41.3	2.4	kCHF
Manufacturing cost	282.5	165.7	40.0	96.1	26.5	28.0	88.8	39.7	kCHF
Total cost	674	261	108	177	85	72	220	104	kCHF
Percentage of total cost	39.6	15.4	6.3	10.4	5.0	4.2	12.9	6.1	%
Year	Year 2012		2013			2014		2015	
Budget 100		550			750		300		
TOTAL ESTIMATED COST: 1700 kCHF									

Daniel Schoerling

- Prototype design is finished, final tests before manufacturing are performed
- Magnet design is advanced, but final parameters are still under discussion
- Cost estimate and schedule is available
- For in-kind collaborations the CERN procurement rules do not necessarily apply
- Decision of Danish FNU what will be delivered as in-kind contribution is expected around end of 2012

In-kind collaborations are still possible and highly appreciated!