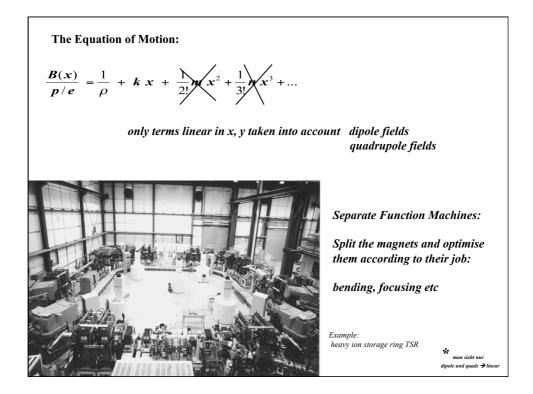
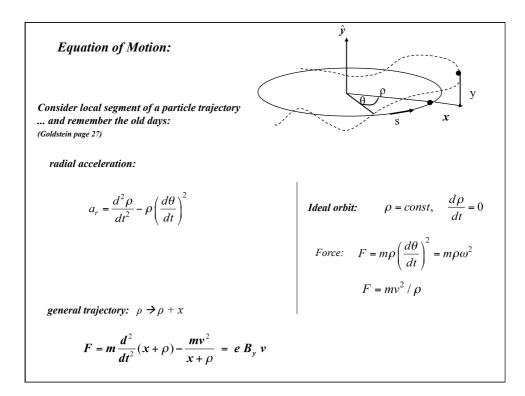


3.) The equation of motion: Linear approximation: * ideal particle \Rightarrow design orbit * any other particle \Rightarrow coordinates x, y small quantities $x,y << \rho$ \Rightarrow magnetic guide field: only linear terms in x & y of B have to be taken into account Taylor Expansion of the B field: $B_y(x) = B_{y0} + \frac{dB_y}{dx}x + \frac{1}{2!}\frac{d^2B_y}{dx^2}x^2 + \frac{1}{3!}\frac{eg''}{dx^3} + \dots$ $\begin{vmatrix} normalise to momentum \\ p/e = B\rho \end{vmatrix}$ $\frac{B(x)}{p/e} = \frac{B_0}{B_0\rho} + \frac{g^*x}{p/e} + \frac{1}{2!}\frac{eg'}{p/e} + \frac{1}{3!}\frac{eg''}{p/e} + \dots$





guide field in linear approx.

$$B_{y} = B_{0} + x \frac{\partial B_{y}}{\partial x} \qquad m \frac{d^{2}x}{dt^{2}} - \frac{mv^{2}}{\rho} (1 - \frac{x}{\rho}) = ev \left\{ B_{0} + x \frac{\partial B_{y}}{\partial x} \right\} \qquad : m$$

$$\frac{d^{2}x}{dt^{2}} - \frac{v^{2}}{\rho} (1 - \frac{x}{\rho}) = \frac{e v B_{0}}{m} + \frac{e v x g}{m}$$
independent variable: $t \to s$

$$\frac{dx}{dt} = \frac{dx}{ds} \frac{ds}{dt}$$

$$\frac{d^{2}x}{dt^{2}} = \frac{d}{dt} \left(\frac{dx}{ds} \frac{ds}{dt} \right) = \frac{d}{ds} \left(\frac{dx}{ds} \frac{ds}{dt} \right) \frac{ds}{dt}$$

$$\frac{d^{2}x}{dt^{2}} = x'' v^{2} + \frac{dx}{ds} \frac{dv}{ds} v$$

$$x'' v^{2} - \frac{v^{2}}{\rho} (1 - \frac{x}{\rho}) = \frac{e v B_{0}}{m} + \frac{e v x g}{m}$$

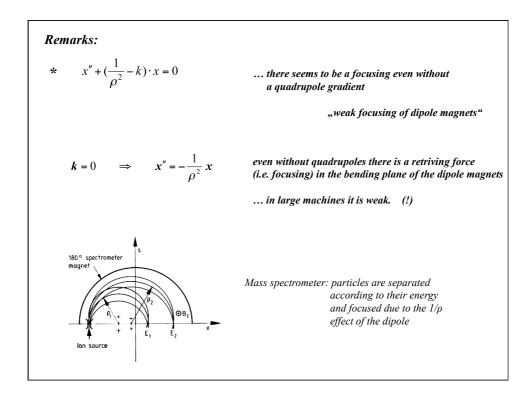
$$: v^{2}$$

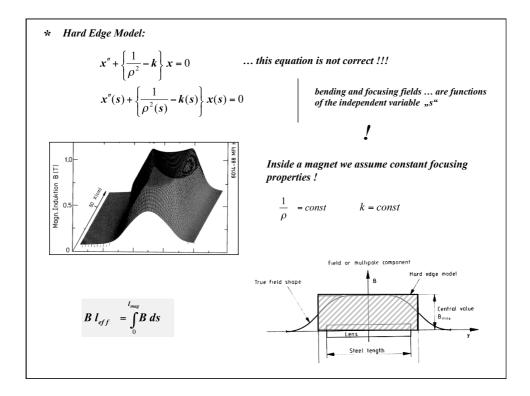
$$x'' - \frac{1}{\rho}(1 - \frac{x}{\rho}) = \frac{e}{mv} \frac{B_0}{mv} + \frac{e \times g}{mv}$$

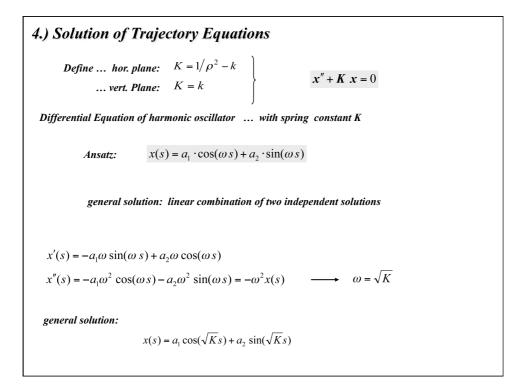
$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = \frac{B_0}{p/e} + \frac{x g}{p/e}$$

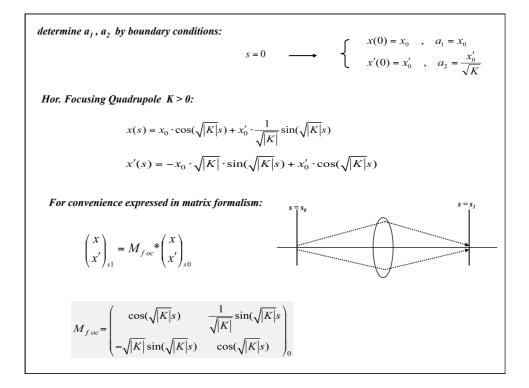
$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = -\frac{1}{\rho} + k x$$

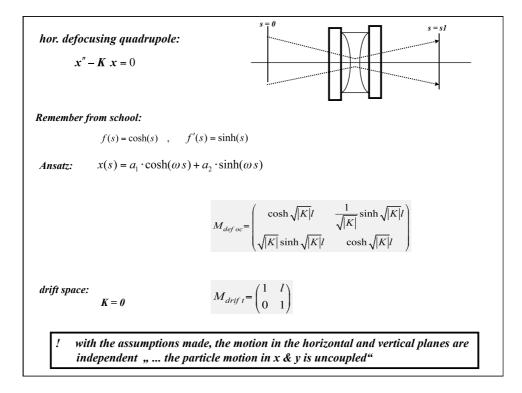
$$x'' + x(\frac{1}{\rho^2} - k) = 0$$











Thin Lens Approximation:

matrix of a quadrupole lens

$$M = \begin{pmatrix} \cos \sqrt{|k|}l & \frac{1}{\sqrt{|k|}} \sin \sqrt{|k|}l \\ -\sqrt{|k|} \sin \sqrt{|k|}l & \cos \sqrt{|k|}l \end{cases}$$

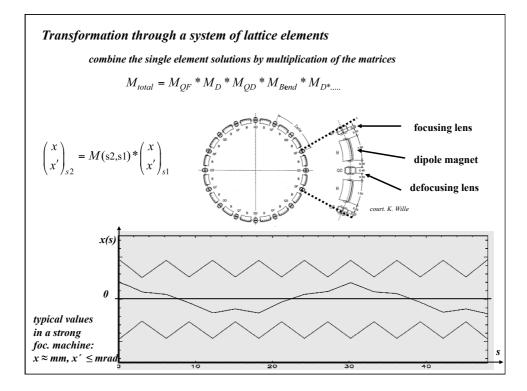
in many practical cases we have the situation:

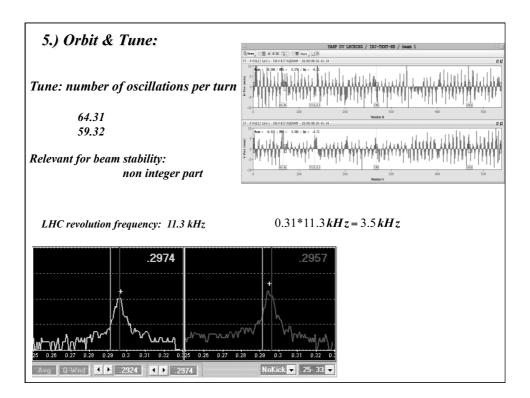
 $f = \frac{1}{kl_q} >> l_q$... focal length of the lens is much bigger than the length of the magnet

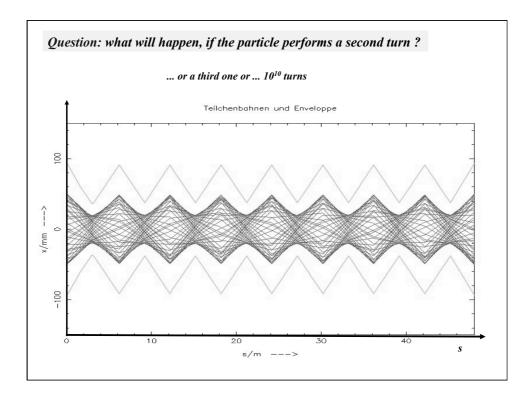
limes: $l_q \rightarrow 0$ while keeping $k l_q = const$

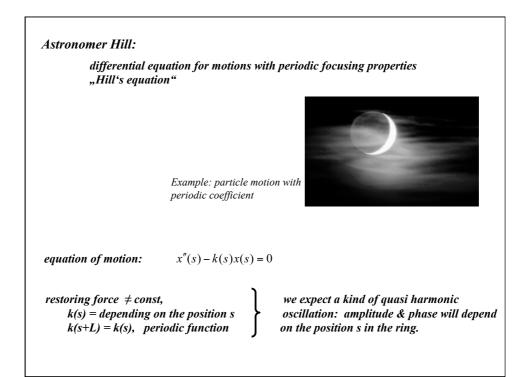
$$M_x = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \qquad \qquad M_z = \begin{pmatrix} 1 & 0 \\ \frac{-1}{f} & 1 \end{pmatrix}$$

... useful for fast (and in large machines still quite accurate) "back on the envelope calculations" ... and for the guided studies !









6.) The Beta Function

General solution of Hill's equation:

(i)
$$x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos(\psi(s) + \phi)$$

 ε , Φ = integration constants determined by initial conditions

 $\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

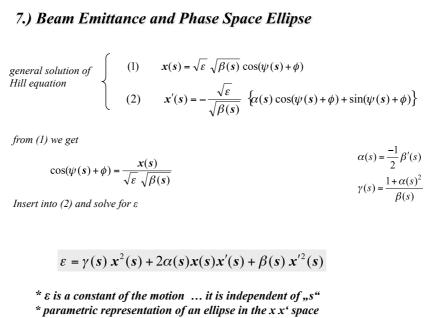
$$\beta(s+L) = \beta(s)$$

Inserting (i) into the equation of motion ...

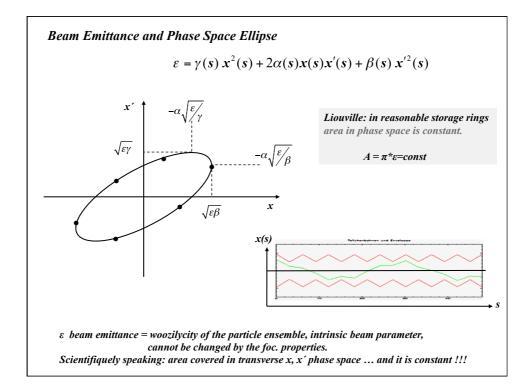
$$\psi(s) = \int_0^s \frac{ds}{\beta(s)}$$

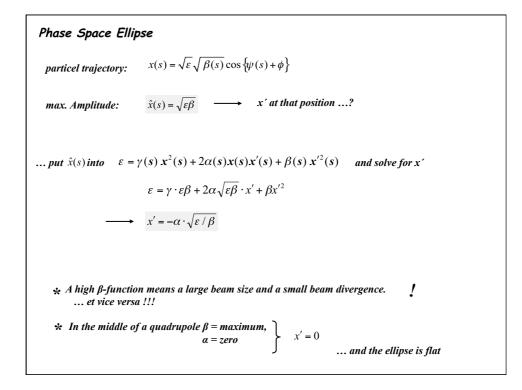
 $\Psi(s) = ,, phase advance" of the oscillation between point ,, 0" and ,, s" in the lattice. For one complete revolution: number of oscillations per turn ,, Tune"$

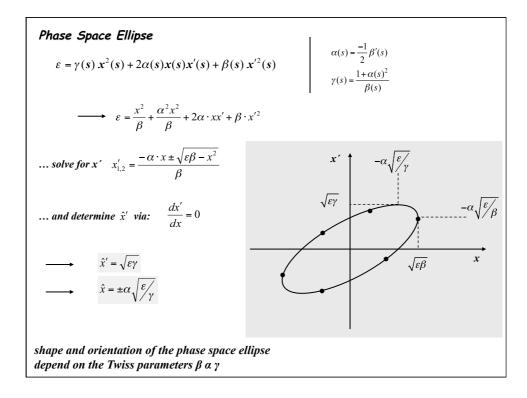
$$Q_y = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)}$$

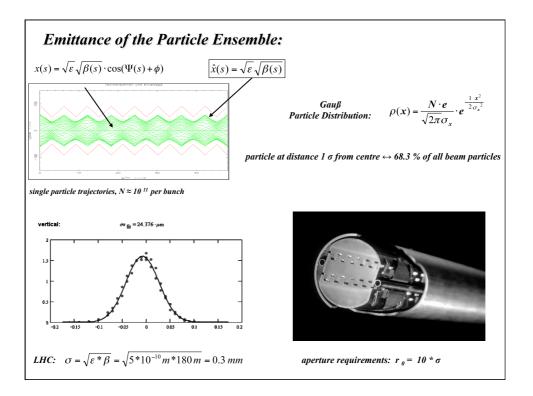


* shape and orientation of ellipse are given by α , β , γ

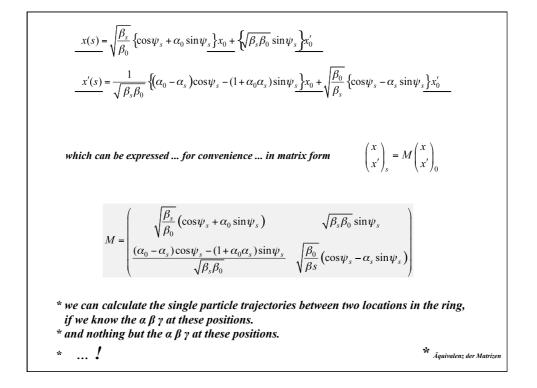


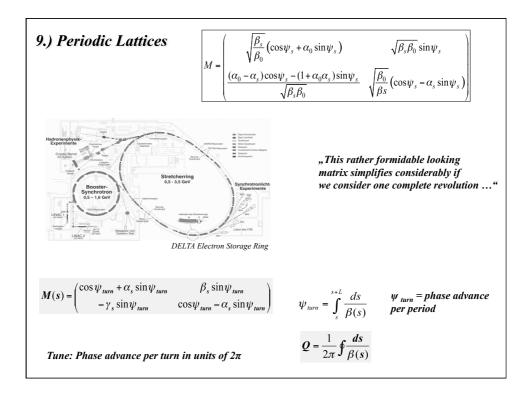


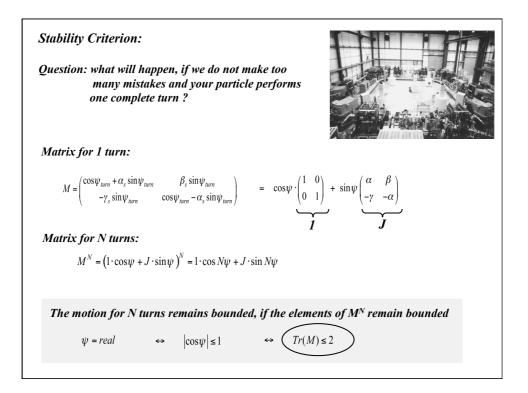




8.) Transfer Matrix M ... yes we had the topic already general solution of Hill's equation $\begin{cases}
x(s) = \sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s) + \phi\} \\
x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}} [\alpha(s) \cos \{\psi(s) + \phi\} + \sin \{\psi(s) + \phi\}]
\end{cases}$ remember the trigonometrical gymnastics: $\sin(a + b) = \dots$ etc $x(s) = \sqrt{\varepsilon} \sqrt{\beta_s} (\cos\psi_s \cos\phi - \sin\psi_s \sin\phi) \\
x'(s) = \frac{-\sqrt{\varepsilon}}{\sqrt{\beta_s}} [\alpha_s \cos\psi_s \cos\phi - \alpha_s \sin\psi_s \sin\phi + \sin\psi_s \cos\phi + \cos\psi_s \sin\phi]$ starting at point $s(0) = s_0$, where we put $\Psi(0) = 0$ $\cos\phi = \frac{x_0}{\sqrt{\varepsilon\beta_0}} , \\
\sin\phi = -\frac{1}{\sqrt{\varepsilon}} (x'_0 \sqrt{\beta_0} + \frac{\alpha_0 x_0}{\sqrt{\beta_0}})$ inserting above ...







stability criterion proof for the disbelieving collegues !!
Matrix for 1 turn:
$$M = \begin{pmatrix} \cos \psi_{hom} + \alpha_s \sin \psi_{hom} & \beta_s \sin \psi_{hom} \\ -\gamma_s \sin \psi_{hom} & \cos \psi_{hom} - \alpha_s \sin \psi_{hom} \end{pmatrix} = \cos \psi \cdot \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{I} + \sin \psi \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}_{J}$$
Matrix for 2 turns:

$$M^2 = (I \cos \psi_1 + J \sin \psi_1)(I \cos \psi_2 + J \sin \psi_2)$$

$$= I^2 \cos \psi_1 \cos \psi_2 + IJ \cos \psi_1 \sin \psi_2 + JI \sin \psi_1 \cos \psi_2 + J^2 \sin \psi_1 \sin \psi_2$$
How ...

$$I^2 = I$$

$$I J = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix}$$

$$J I = J I$$

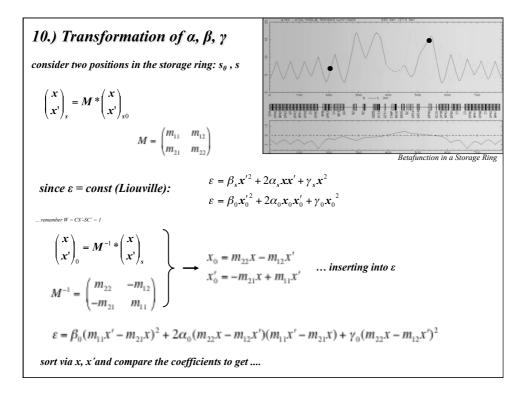
$$J^2 = \left(\begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} \right)$$

$$I J = J I$$

$$J^2 = \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} * \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} = \begin{pmatrix} \alpha^2 - \gamma\beta & \alpha\beta - \beta\alpha \\ 0 & -1 \end{pmatrix} = -I$$

$$M^2 = I \cos(\psi_1 + \psi_2) + J \sin(\psi_1 + \psi_2)$$

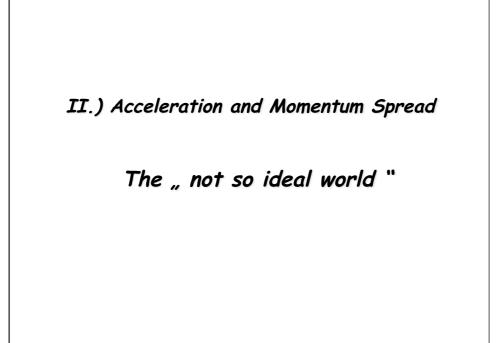
$$M^2 = I \cos(2\psi) + J \sin(2\psi)$$

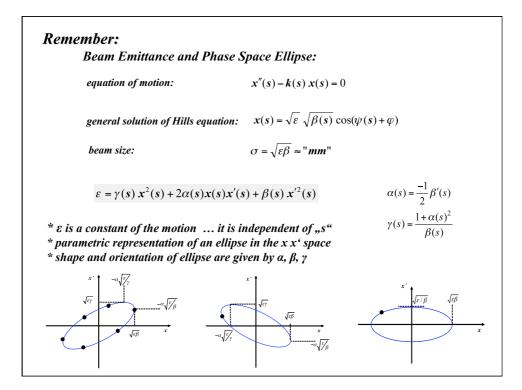


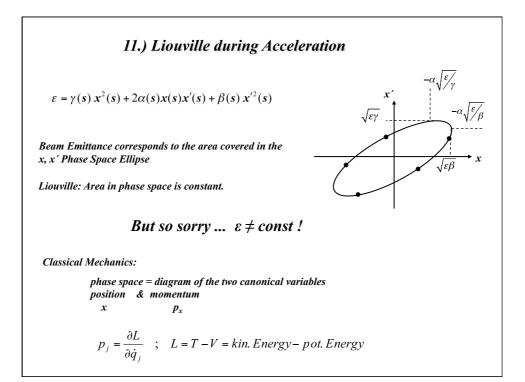
The Twiss parameters α , β , γ can be transformed through the lattice via the matrix elements defined above. $\beta(s) = m_{11}^2 \beta_0 - 2m_{11}m_{12} \alpha_0 + m_{12}^2 \gamma_0$ $\alpha(s) = -m_{11}m_{21} \beta_0 + (m_{12}m_{21} + m_{11}m_{22}) \alpha_0 - m_{12}m_{22} \gamma_0$ $\gamma(s) = m_{21}^2 \beta_0 - 2m_{21}m_{22} \alpha_0 + m_{22}^2 \gamma_0$ in matrix notation: $\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s2} = \begin{pmatrix} m_{11}^2 & -2m_{11}m_{12} & m_{12}^2 \\ -m_{11}m_{21} & m_{12}m_{21} + m_{22}m_{11} & -m_{12}m_{22} \\ m_{12}^2 & -2m_{22}m_{21} & m_{22}^2 \end{pmatrix} * \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s1} \qquad ($

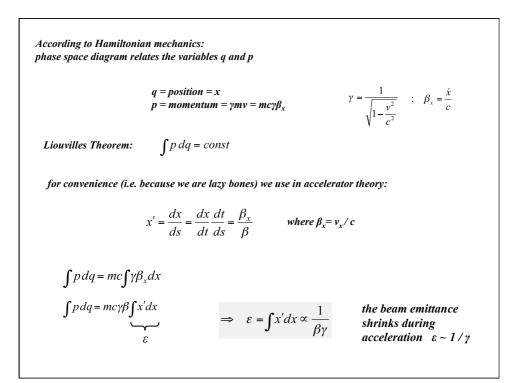
1.) this expression is important

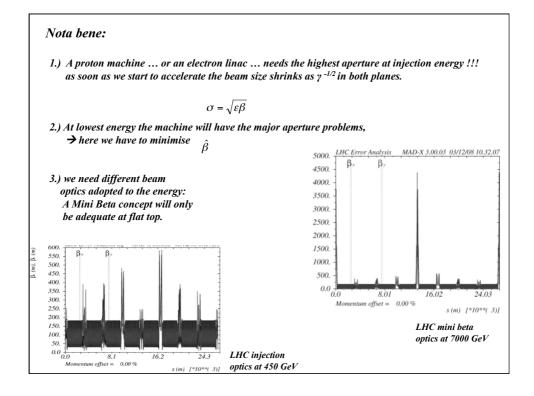
- 2.) given the twiss parameters α , β , γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
- 3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.
- 4.) go back to point 1.)

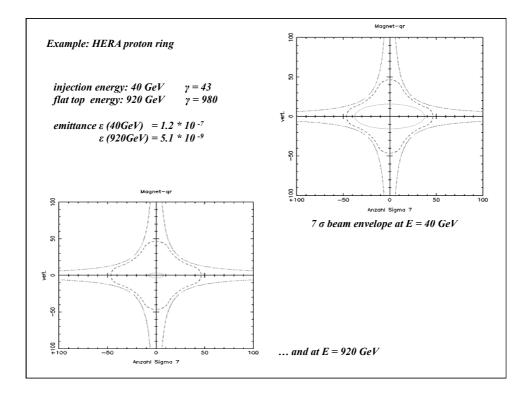


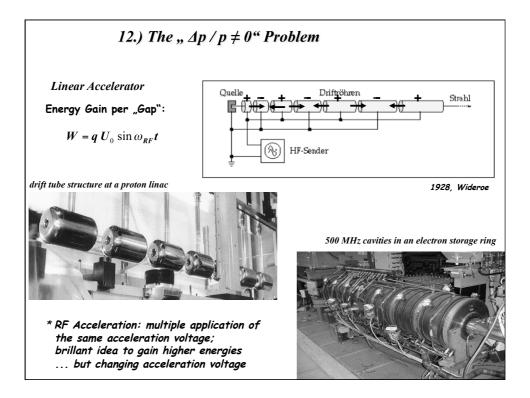


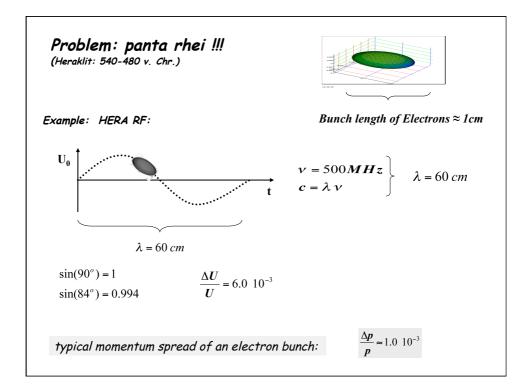


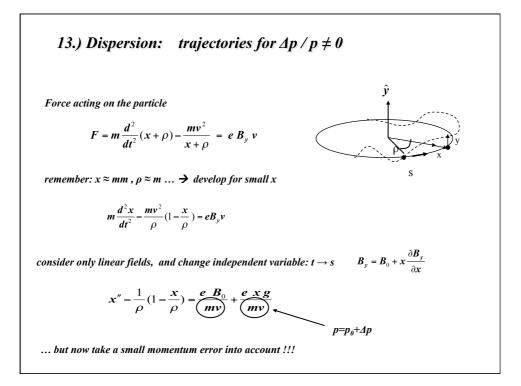


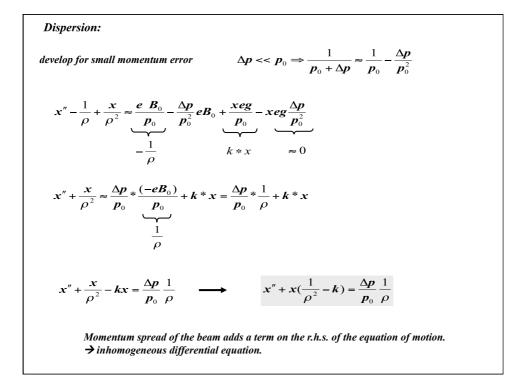


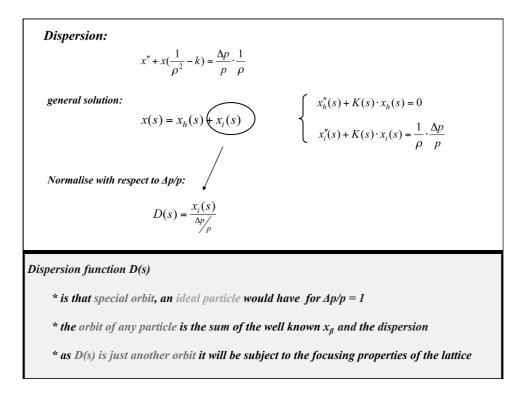


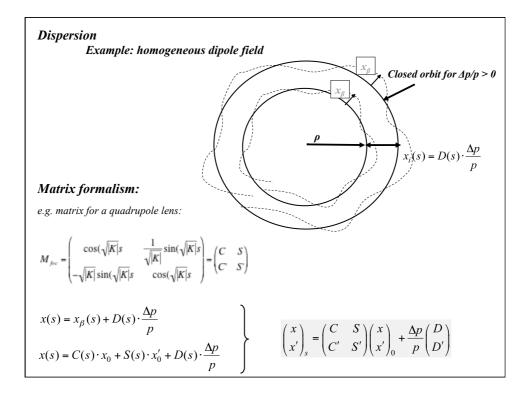


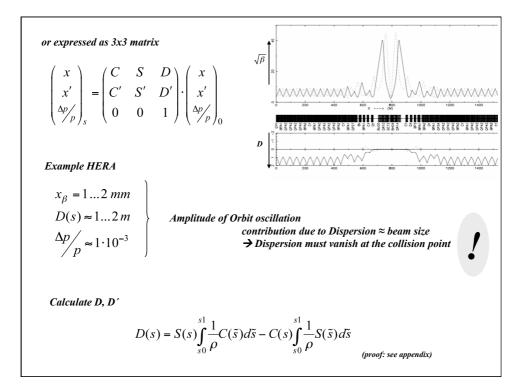


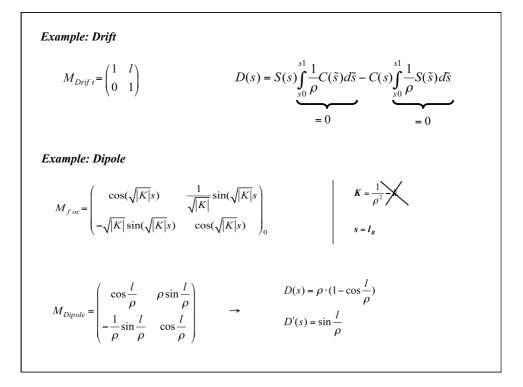


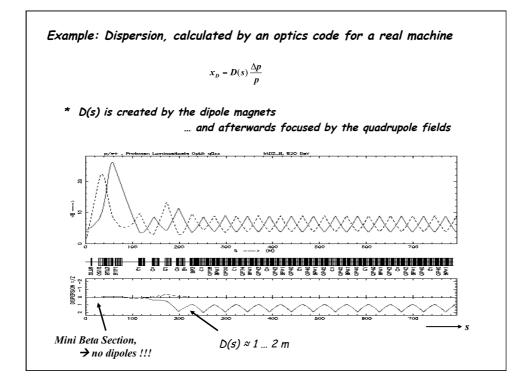


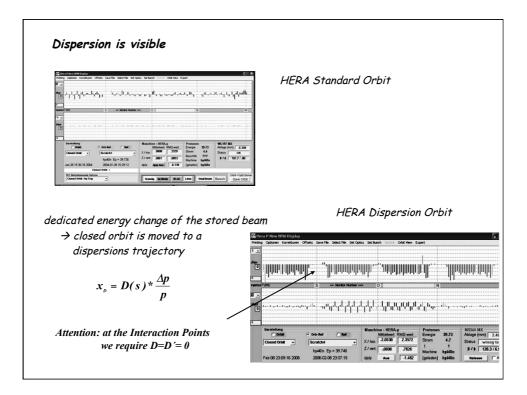


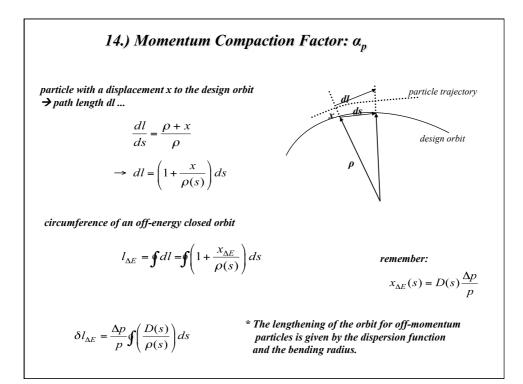


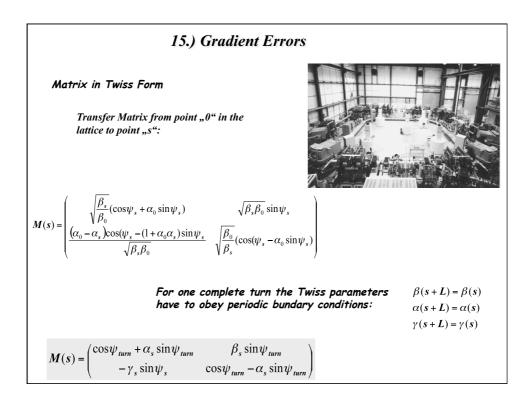


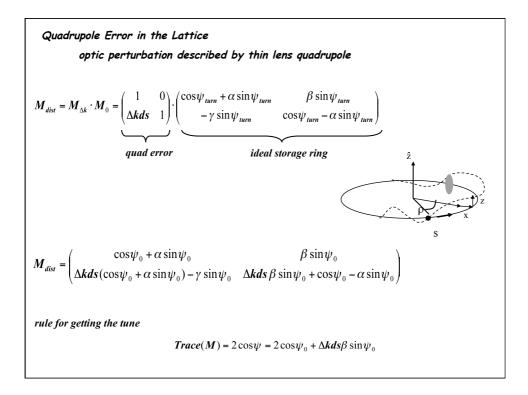


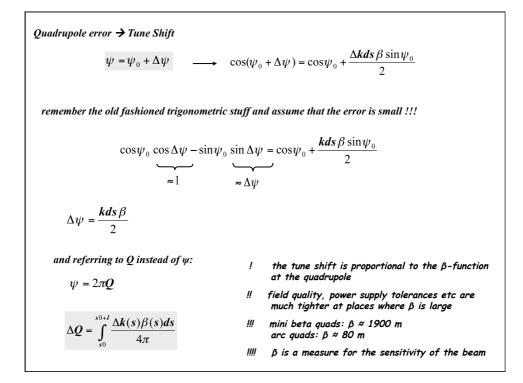


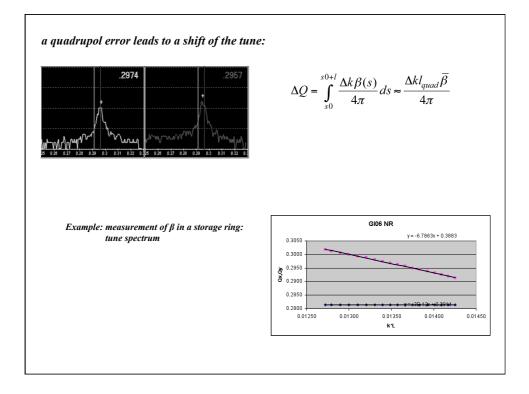


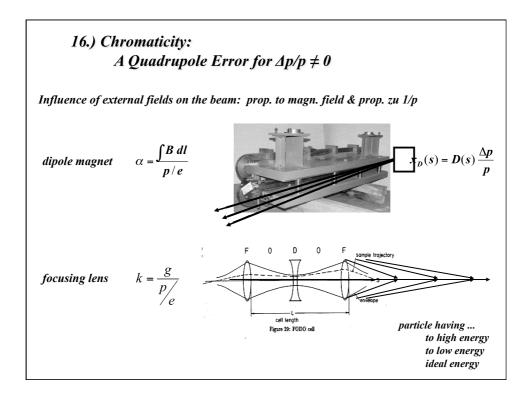




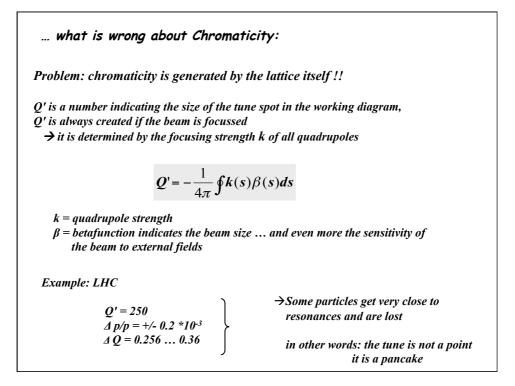


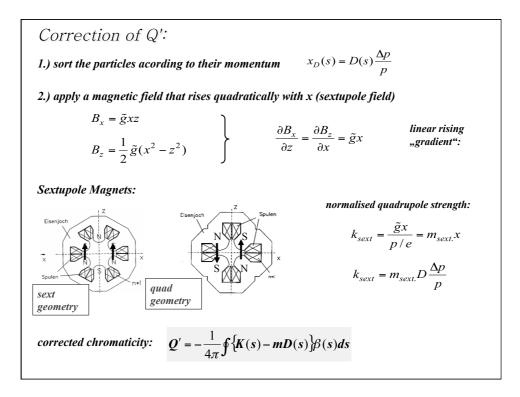


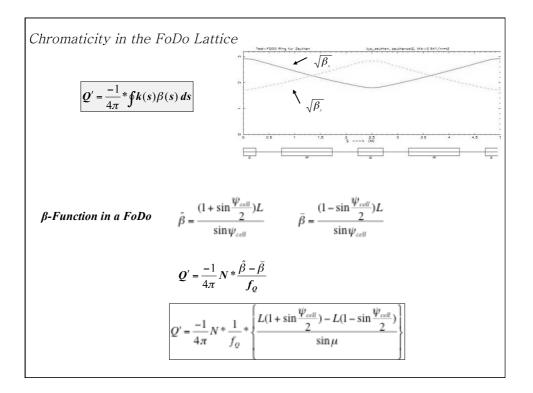


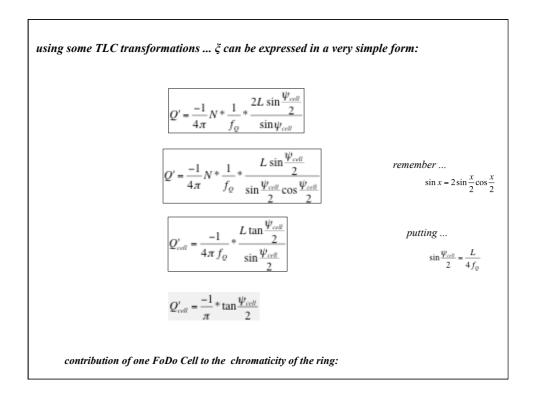


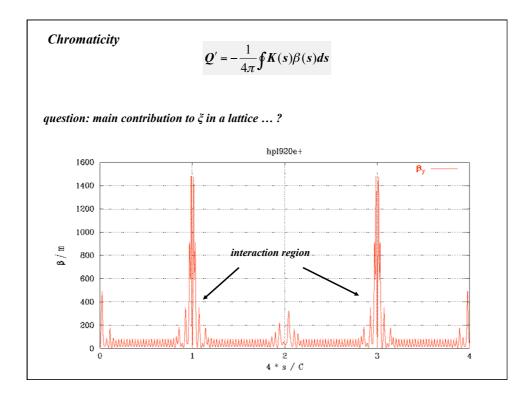
Chromaticity: Q' $k = \frac{g}{p_e} \qquad p = p_0 + \Delta p$ in case of a momentum spread: $k = \frac{eg}{p_0 + \Delta p} \approx \frac{e}{p_0} (1 - \frac{\Delta p}{p_0}) g = k_0 + \Delta k$ $\Delta k = -\frac{\Delta p}{p_0} k_0$... which acts like a quadrupole error in the machine and leads to a tune spread: $\Delta Q = -\frac{1}{4\pi} \frac{\Delta p}{p_0} k_0 \beta(s) ds$ definition of chromaticity: $\Delta Q = Q' \quad \frac{\Delta p}{p} \quad ; \qquad Q' = -\frac{1}{4\pi} \oint k(s) \beta(s) ds$











17.) Résumé:	
beam rigidity:	$B \cdot \rho = \frac{p}{q}$
bending strength of a dipole:	$\frac{1}{\rho} \left[m^{-1} \right] = \frac{0.2998 \cdot B_0(T)}{p(GeV/c)}$
focusing strength of a quadrupole:	$k\left[m^{-2}\right] = \frac{0.2998 \cdot g}{p(GeV/c)}$
focal length of a quadrupole:	$f = \frac{1}{k \cdot l_q}$
equation of motion:	$x'' + Kx = \frac{1}{\rho} \frac{\Delta p}{p}$
matrix of a foc. quadrupole:	$x_{s2} = M \cdot x_{s1}$
$M = \begin{pmatrix} \cos\sqrt{ K }l & \frac{1}{\sqrt{ K }}\sin\sqrt{ K }l \\ -\sqrt{ K }\sin\sqrt{ K }l & \cos\sqrt{ K }l \end{pmatrix}$	$, \qquad \qquad M = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$

Resume':	beam emittance:	$\varepsilon \propto \frac{1}{\beta \gamma}$
b	eta function in a drift:	$\beta(s) = \beta_0 - 2\alpha_0 s + \gamma_0 s^2$
	\dots and for $\alpha = 0$	$\beta(s) = \beta_0 + \frac{s^2}{\beta_0}$
-	trajectory for ∆p/p ≠ 0 genious equation:	$\boldsymbol{x}'' + \boldsymbol{x}(\frac{1}{\rho^2} - \boldsymbol{k}) = \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_0} \frac{1}{\rho}$
	and its solution:	$x(s) = x_{\beta}(s) + D(s) \cdot \frac{\Delta p}{p}$
mo	mentum compaction:	$\frac{\delta I_{e}}{L} = \alpha_{cp} \frac{\Delta p}{p} \qquad \alpha_{cp} \approx \frac{2\pi}{L} \langle D \rangle \approx \frac{\langle D \rangle}{R}$
	quadrupole error:	$\Delta Q = \int_{s_0}^{s_0+t} \frac{\Delta K(s)\beta(s)ds}{4\pi}$
	chromaticity:	$Q' = -\frac{1}{4\pi} \oint K(s)\beta(s)ds$

18.) Bibliography
1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
2.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York,1962
3.) H. Wiedemann, Particle Accelerator Physics (Springer-Verlag, Berlin, 1993)
4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998)
5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, <u>http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm</u>
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
9.) Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
10.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990