Introduction to Transverse Beam Dynamics

Bernhard Holzer,

CERN=EAC

The Ideal World

I.) Magnetic Fields and Particle Trajectories

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about $v \approx c$ $L=10^{10}-10^{11} \mathrm{~km}$
... several times Sun - Pluto and back
intensity (10 ${ }^{11}$)

\rightarrow guide the particles on a well defined orbit (,"design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

Transverse Beam Dynamics:

0.) Introduction and Basic Ideas

„... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

$$
\begin{aligned}
& \text { Lorentz force } \boldsymbol{F}=\boldsymbol{q}(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}}) \\
& \text { typical velocity in high energy machines: } \quad \boldsymbol{v} \approx \boldsymbol{c} \approx 3 * 10^{8} \frac{\boldsymbol{m}}{\boldsymbol{s}}
\end{aligned}
$$

old greek dictum of wisdom:
if you are clever, you use magnetic fields in an accelerator wherever it is possible.

But remember: magn. fields act allways perpendicular to the velocity of the particle
\rightarrow only bending forces, \rightarrow no „beam acceleration"

The ideal circular orbit

circular coordinate system
condition for circular orbit:

Lorentz force
centrifugal force

$$
\left.\left.\begin{array}{l}
\boldsymbol{F}_{L}=\boldsymbol{e} v \boldsymbol{B} \\
\boldsymbol{F}_{\text {contr }}=\frac{\gamma \boldsymbol{m}_{0} v^{2}}{\rho} \\
\frac{\gamma \boldsymbol{m}_{0} v^{\prime}}{\rho}=\boldsymbol{e} \swarrow \boldsymbol{B}
\end{array}\right\} \begin{array}{l}
\frac{p}{\boldsymbol{e}}=\boldsymbol{B} \rho \\
\boldsymbol{B} \rho=\text { "beam rigidity" }
\end{array}\right\}
$$

1.) The Magnetic Guide Field

Dipole Magnets:
define the ideal orbit
homogeneous field created
by two flat pole shoes

convenient units:

$$
B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\}
$$

Normalise magnetic field to momentum:

$$
\frac{\boldsymbol{p}}{\boldsymbol{e}}=\boldsymbol{B} \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{\boldsymbol{e} \boldsymbol{B}}{\boldsymbol{p}}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\frac{1}{\rho} & =\boldsymbol{e} \frac{8.3 \mathrm{Vs} / \boldsymbol{m}^{2}}{7000 * 10^{9} \boldsymbol{e V} / \mathrm{c}}=\frac{8.3 \boldsymbol{s} 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \mathrm{~m}^{2}} \\
\frac{1}{\rho} & =0.3 \frac{8.3}{7000} \mathrm{l} / \mathrm{m}
\end{aligned}
$$

$$
\rho=2.53 \mathrm{~km} \longrightarrow \quad 2 \pi \rho=17.6 \mathrm{~km} \quad B \approx 1 \ldots 8 T
$$

rule of thumb:

$$
\frac{1}{\rho} \approx 0.3 \frac{\boldsymbol{B}[\boldsymbol{T}]}{p[\boldsymbol{G e V} / \boldsymbol{c}]}
$$

"normalised bending strength"

2.) Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=\boldsymbol{g} \boldsymbol{x} \quad B_{x}=\boldsymbol{g} \boldsymbol{y}
$$

normalised quadrupole field:
gradient of a quadrupole magnet:

$$
g=\frac{2 \mu_{0} n I}{r^{2}}
$$

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(\boldsymbol{T} / \boldsymbol{m})}{p(\boldsymbol{G e V} / \boldsymbol{c})}
$$

LHC main quadrupole magnet

$$
\boldsymbol{g} \approx 25 \ldots 220 \mathrm{~T} / \mathrm{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{C}}+\frac{\partial \overrightarrow{\mathrm{E}} /}{\partial \mathrm{t}}=0 \quad \Rightarrow \quad \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{B}_{x}}{\partial \boldsymbol{y}}
$$

3.) The equation of motion:

Linear approximation:

```
*ideal particle \(\rightarrow\) design orbit
* any other particle \(\rightarrow\) coordinates \(x, y\) small quantities
\(x, y \ll \rho\)
```

\rightarrow magnetic guide field: only linear terms in $x \& y$ of B have to be taken into account

Taylor Expansion of the B field:

$$
\boldsymbol{B}_{\boldsymbol{y}}(\boldsymbol{x})=\boldsymbol{B}_{\boldsymbol{y} 0}+\frac{\boldsymbol{d} \boldsymbol{B}_{\boldsymbol{y}}}{\boldsymbol{d} \boldsymbol{x}} \boldsymbol{x}+\frac{1}{2!} \frac{\boldsymbol{d}^{2} \boldsymbol{B}_{\boldsymbol{y}}}{\boldsymbol{d} \boldsymbol{x}^{2}} \boldsymbol{x}^{2}+\frac{1}{3!} \frac{\boldsymbol{e g}^{\prime \prime}}{\boldsymbol{d} \boldsymbol{x}^{3}}+\ldots \quad \begin{array}{|}
\text { normalise to momentum } \\
\text { p/e }=B \rho
\end{array}
$$

$$
\frac{\boldsymbol{B}(\boldsymbol{x})}{p / e}=\frac{\boldsymbol{B}_{0}}{\boldsymbol{B}_{0} \rho}+\frac{\boldsymbol{g}^{*} \boldsymbol{x}}{p / e}+\frac{1}{2!} \frac{\boldsymbol{e} g^{\prime}}{p / e}+\frac{1}{3!} \frac{\boldsymbol{e g}^{\prime \prime}}{p / e}+\ldots
$$

The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!}\right) / x^{3}+\ldots
$$

only terms linear in x, y taken into account
dipole fields quadrupole fields

Separate Function Machines:
Split the magnets and optimise them according to their job:
bending, focusing etc

Example:

heavy ion storage ring TSR

Equation of Motion:

Consider local segment of a particle trajectory ... and remember the old days:

(Goldstein page 27)
radial acceleration:

$$
a_{r}=\frac{d^{2} \rho}{d t^{2}}-\rho\left(\frac{d \theta}{d t}\right)^{2}
$$

Ideal orbit: $\quad \rho=$ const,$\quad \frac{d \rho}{d t}=0$

$$
\text { Force: } \begin{gathered}
F=m \rho\left(\frac{d \theta}{d t}\right)^{2}=m \rho \omega^{2} \\
F=m v^{2} / \rho
\end{gathered}
$$

general trajectory: $\rho \rightarrow \rho+x$

$$
F=m \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{m v^{2}}{x+\rho}=\boldsymbol{e} B_{y} v
$$

$$
F=m \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{m v^{2}}{x+\rho}=e B_{y} v
$$

S
(1) $\frac{d^{2}}{d t^{2}}(x+\rho)=\frac{d^{2}}{d t^{2}} x \quad \ldots$ as $\rho=$ cons
(2) remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
\begin{gathered}
\frac{1}{x+\rho} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right) \quad \begin{array}{c}
\text { Taylor Expansion } \\
f(x)=f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)}{1!} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+\ldots
\end{array} \\
\boldsymbol{m} \frac{d^{2} \boldsymbol{x}}{\boldsymbol{d t ^ { 2 }}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\boldsymbol{e} \boldsymbol{B}_{y} v}
\end{gathered}
$$

guide field in linear approx.

$$
\begin{aligned}
\boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}} \quad & \boldsymbol{m} \frac{\boldsymbol{d}^{2} \boldsymbol{x}}{\boldsymbol{d t ^ { 2 }}}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{\boldsymbol{x}}{\rho}\right)=\boldsymbol{e} \boldsymbol{v}\left\{\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}\right\} \\
& \frac{d^{2} \boldsymbol{x}}{d t^{2}}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{\boldsymbol{e} v \boldsymbol{B}_{0}}{m}+\frac{\boldsymbol{e} v \boldsymbol{x} \boldsymbol{g}}{\boldsymbol{m}}
\end{aligned}
$$

independent variable: $t \rightarrow s$

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t} \\
& \frac{d^{2} x}{d t^{2}}=\frac{d}{d t}\left(\frac{d x}{d s} \frac{d s}{d t}\right)=\frac{d}{d s} \underbrace{\left(\frac{d x}{d s}\right.}_{x^{\prime}} \underbrace{\left.\frac{d s}{d t}\right)}_{v} \frac{d s}{d t} \\
& \frac{d^{2} x}{d t^{2}}=x^{\prime \prime} v^{2}+\frac{d x}{d i s} \frac{d v}{d s} v
\end{aligned}
$$

$$
x^{\prime \prime} v^{2}-\frac{v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e v B_{0}}{m}+\frac{e v x g}{m}
$$

$x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=\frac{e B_{0}}{m v}+\frac{e x g}{m v}$
$x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=\frac{B_{0}}{p / e}+\frac{x g}{p / e}$
$x^{\prime \prime}-\frac{1}{\rho}+\frac{x}{\rho^{2}}=-\frac{1}{\rho}+k x$

$$
\boldsymbol{x}^{\prime \prime}+\boldsymbol{x}\left(\frac{1}{\rho^{2}}-\boldsymbol{k}\right)=0
$$

Equation for the vertical motion:

$$
\begin{array}{cc}
\frac{1}{\rho^{2}}=0 & \text { no dipoles ... in general ... } \\
\boldsymbol{k} \leftrightarrow-\boldsymbol{k} & \text { quadrupole field changes sign } \\
\boldsymbol{y}^{\prime \prime}+\boldsymbol{k} \boldsymbol{y}=0
\end{array}
$$

normalize to momentum of particle

$$
\begin{aligned}
& \frac{B_{0}}{p / e}=-\frac{1}{\rho} \\
& \frac{g}{p / e}=k
\end{aligned}
$$

Remarks:

$$
* \quad x^{\prime \prime}+\left(\frac{1}{\rho^{2}}-k\right) \cdot x=0
$$

$$
k=0 \quad \Rightarrow \quad x^{\prime \prime}=-\frac{1}{\rho^{2}} x
$$

even without quadrupoles there is a retriving force (i.e. focusing) in the bending plane of the dipole magnets
... in large machines it is weak.(!)

Mass spectrometer: particles are separated according to their energy and focused due to the $1 / \rho$
effect of the dipole

$$
\begin{aligned}
& x^{\prime \prime}+\left\{\frac{1}{\rho^{2}}-\boldsymbol{k}\right\} x=0 \\
& x^{\prime \prime}(s)+\left\{\frac{1}{\rho^{2}(s)}-k(s)\right\} x(s)=0
\end{aligned}
$$

... this equation is not correct !!!
bending and focusing fields ... are functions of the independent variable „s"

Inside a magnet we assume constant focusing properties!

$$
\frac{1}{\rho}=\text { const } \quad k=\text { const }
$$

$$
B l_{e f f}=\int_{0}^{I_{\operatorname{mag}}} B d s
$$

4.) Solution of Trajectory Equations

$$
\left.\begin{array}{cl}
\text { Define ... hor. plane: } & K=1 / \rho^{2}-k \\
\text {... vert. Plane: } & K=k
\end{array}\right\} \quad x^{\prime \prime}+K x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

$$
\text { Ansatz: } \quad x(s)=a_{1} \cdot \cos (\omega s)+a_{2} \cdot \sin (\omega s)
$$

general solution: linear combination of two independent solutions

$$
\begin{aligned}
& x^{\prime}(s)=-a_{1} \omega \sin (\omega s)+a_{2} \omega \cos (\omega s) \\
& x^{\prime \prime}(s)=-a_{1} \omega^{2} \cos (\omega s)-a_{2} \omega^{2} \sin (\omega s)=-\omega^{2} x(s) \quad \longrightarrow \quad \omega=\sqrt{K}
\end{aligned}
$$

general solution:

$$
x(s)=a_{1} \cos (\sqrt{K} s)+a_{2} \sin (\sqrt{K} s)
$$

determine a_{1}, a_{2} by boundary conditions:

$$
s=0 \quad \longrightarrow \quad \begin{cases}x(0)=x_{0} & , \quad a_{1}=x_{0} \\ x^{\prime}(0)=x_{0}^{\prime} & , a_{2}=\frac{x_{0}^{\prime}}{\sqrt{K}}\end{cases}
$$

Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\begin{gathered}
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0} \\
M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\
-\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)_{0}
\end{gathered}
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} x=0
$$

Remember from school:

$$
f(s)=\cosh (s) \quad, \quad f^{\prime}(s)=\sinh (s)
$$

Ansatz: $\quad x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)$

$$
M_{\text {def } o c}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent ,, ... the particle motion in $x \& y$ is uncoupled"

Thin Lens Approximation:
matrix of a quadrupole lens

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|k|} l & \frac{1}{\sqrt{|k|}} \sin \sqrt{|k|} l \\
-\sqrt{|k|} \sin \sqrt{|k|} l & \cos \sqrt{|k|} l
\end{array}\right)
$$

in many practical cases we have the situation:

$$
f=\frac{1}{k l_{q}} \gg l_{q} \quad \text {... focal length of the lens is much bigger than the length of the magnet }
$$

limes: $\boldsymbol{l}_{q} \rightarrow 0$ while keeping $\quad k l_{q}=$ const

$$
M_{x}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right) \quad M_{z}=\left(\begin{array}{cc}
1 & 0 \\
\frac{-1}{f} & 1
\end{array}\right)
$$

useful for fast (and in large machines still quite accurate) „back on the envelope calculations" ... and for the guided studies !

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

$$
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} \ldots}
$$

$$
\binom{x}{x^{\prime}}_{s 2}=M(\mathrm{~s} 2, \mathrm{~s} 1) *\binom{x}{x^{\prime}}_{s 1}
$$

typical values in a strong foc. machine: $\boldsymbol{x} \approx \mathrm{mm}, \boldsymbol{x}^{\prime} \leq \mathrm{mrad}$

5.) Orbit \& Tune:

Tune: number of oscillations per turn
64.31
59.32

Relevant for beam stability:
non integer part

LHC revolution frequency: 11.3 kHz
$0.31 * 11.3 \mathbf{k H z}=3.5 \mathbf{k H z}$

Question: what will happen, if the particle performs a second turn?
... or a third one or ... 10^{10} turns

Astronomer Hill:

differential equation for motions with periodic focusing properties "Hill's equation"

Example: particle motion with periodic coefficient

equation of motion: $\quad x^{\prime \prime}(s)-k(s) x(s)=0$
restoring force \neq const,
$k(s)=$ depending on the position s $k(s+L)=k(s)$, periodic function

we expect a kind of quasi harmonic oscillation: amplitude \& phase will depend on the position s in the ring.

6.) The Beta Function

General solution of Hill's equation:

$$
\text { (i) } \quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cdot \cos (\psi(s)+\phi)
$$

$\varepsilon, \Phi=$ integration constants determined by initial conditions
$\beta(s)$ periodic function given by focusing properties of the lattice \leftrightarrow quadrupoles

$$
\beta(s+L)=\beta(s)
$$

Inserting (i) into the equation of motion ...

$$
\psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

$\Psi(s)=$,phase advance" of the oscillation between point , 0 " and ,s" in the lattice. For one complete revolution: number of oscillations per turn „Tune"

$$
Q_{y}=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

7.) Beam Emittance and Phase Space Ellipse

$\begin{aligned} & \text { general solution of } \\ & \text { Hill equation }\end{aligned}\left\{\begin{array}{ll}\text { (1) } & \boldsymbol{x}(\boldsymbol{s})=\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})} \cos (\psi(\boldsymbol{s})+\phi) \\ (2) & \boldsymbol{x}^{\prime}(\boldsymbol{s})=-\frac{\sqrt{\varepsilon}}{\sqrt{\beta(\boldsymbol{s})}}\{\alpha(\boldsymbol{s}) \cos (\psi(\boldsymbol{s})+\phi)+\sin (\psi(\boldsymbol{s})+\phi)\}\end{array}\right.$ (2)
from (1) we get

$$
\cos (\psi(\boldsymbol{s})+\phi)=\frac{\boldsymbol{x}(\boldsymbol{s})}{\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})}}
$$

Insert into (2) and solve for ε

$$
\begin{aligned}
& \alpha(s)=\frac{-1}{2} \beta^{\prime}(s) \\
& \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
\end{aligned}
$$

$$
\varepsilon=\gamma(\boldsymbol{s}) \boldsymbol{x}^{2}(\boldsymbol{s})+2 \alpha(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s}) \boldsymbol{x}^{\prime}(\boldsymbol{s})+\beta(\boldsymbol{s}) \boldsymbol{x}^{\prime 2}(\boldsymbol{s})
$$

* ε is a constant of the motion ... it is independent of ,s" * parametric representation of an ellipse in the $x x^{6}$ space * shape and orientation of ellipse are given by α, β, γ

Beam Emittance and Phase Space Ellipse

$$
\varepsilon=\gamma(\boldsymbol{s}) \boldsymbol{x}^{2}(\boldsymbol{s})+2 \alpha(\boldsymbol{s}) \boldsymbol{x}(\boldsymbol{s}) \boldsymbol{x}^{\prime}(\boldsymbol{s})+\beta(\boldsymbol{s}) \boldsymbol{x}^{\prime 2}(\boldsymbol{s})
$$

ε beam emittance $=$ woozilycity of the particle ensemble, intrinsic beam parameter, cannot be changed by the foc. properties.
Scientifiquely speaking: area covered in transverse x, x^{\prime} phase space ... and it is constant !!!!

Phase Space Ellipse

particel trajectory: $\quad x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\}$
max. Amplitude: $\quad \hat{x}(s)=\sqrt{\varepsilon \beta} \quad \longrightarrow \quad \boldsymbol{x}^{\prime}$ at that position \ldots ?
... put $\hat{x}(s)$ into $\quad \varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s) \quad$ and solve for x^{\prime}

$$
\varepsilon=\gamma \cdot \varepsilon \beta+2 \alpha \sqrt{\varepsilon \beta} \cdot x^{\prime}+\beta x^{\prime 2}
$$

$$
\longrightarrow \quad x^{\prime}=-\alpha \cdot \sqrt{\varepsilon / \beta}
$$

* A high β-function means a large beam size and a small beam divergence.
... et vice versa !!!
* In the middle of a quadrupole $\beta=$ maximum,

$$
\alpha=\text { zero } \quad\} \quad x^{\prime}=0
$$

... and the ellipse is flat

Phase Space Ellipse

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

$$
\alpha(s)=\frac{-1}{2} \beta^{\prime}(s)
$$

$$
\gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}
$$

$$
\longrightarrow \varepsilon=\frac{x^{2}}{\beta}+\frac{\alpha^{2} x^{2}}{\beta}+2 \alpha \cdot x x^{\prime}+\beta \cdot x^{\prime 2}
$$

... solve for $x^{\prime} \quad x_{1,2}^{\prime}=\frac{-\alpha \cdot x \pm \sqrt{\varepsilon \beta-x^{2}}}{\beta}$
... and determine \hat{x}^{\prime} via: $\quad \frac{d x^{\prime}}{d x}=0$

$$
\begin{array}{ll}
\longrightarrow & \hat{x}^{\prime}=\sqrt{\varepsilon \gamma} \\
\longrightarrow & \hat{x}= \pm \alpha \sqrt{\varepsilon / \gamma}
\end{array}
$$

shape and orientation of the phase space ellipse
depend on the Twiss parameters β a γ

Emittance of the Particle Ensemble:

Gauß Particle Distribution:

$$
\rho(\boldsymbol{x})=\frac{\boldsymbol{N} \cdot \boldsymbol{e}}{\sqrt{2 \pi} \sigma_{x}} \cdot \boldsymbol{e}^{-\frac{1}{2} \frac{x}{}_{2}^{2} \sigma_{x}^{2}}
$$

particle at distance 1σ from centre $\leftrightarrow \mathbf{6 8 . 3} \%$ of all beam particles
single particle trajectories, $N \approx 10{ }^{11}$ per bunch
vertical: $\quad \sigma_{\mathrm{fit}}=24.376 \cdot \mu \mathrm{~m}$

LHC: $\quad \sigma=\sqrt{\varepsilon^{*} \beta}=\sqrt{5 * 10^{-10} m^{*} 180 \mathrm{~m}}=0.3 \mathrm{~mm}$

aperture requirements: $r_{0}=10 * \sigma$

8.) Transfer Matrix M

... yes we had the topic already

general solution of Hill's equation

$$
\begin{aligned}
& x(s)=\sqrt{\varepsilon} \sqrt{\beta(s)} \cos \{\psi(s)+\phi\} \\
& x^{\prime}(s)=\frac{-\sqrt{\varepsilon}}{\sqrt{\beta(s)}}[\alpha(s) \cos \{\psi(s)+\phi\}+\sin \{\psi(s)+\phi\}]
\end{aligned}
$$

remember the trigonometrical gymnastics: $\sin (a+b)=\ldots$ etc

$$
\begin{aligned}
x(s) & =\sqrt{\varepsilon} \sqrt{\beta_{s}}\left(\cos \psi_{s} \cos \phi-\sin \psi_{s} \sin \phi\right) \\
x^{\prime}(s) & =\frac{-\sqrt{\varepsilon}}{\sqrt{\beta_{s}}}\left[\alpha_{s} \cos \psi_{s} \cos \phi-\alpha_{s} \sin \psi_{s} \sin \phi+\sin \psi_{s} \cos \phi+\cos \psi_{s} \sin \phi\right]
\end{aligned}
$$

starting at point $s(0)=s_{0}$, where we put $\Psi(0)=0$

$$
\left.\begin{array}{l}
\cos \phi=\frac{x_{0}}{\sqrt{\varepsilon \beta_{0}}}, \\
\sin \phi=-\frac{1}{\sqrt{\varepsilon}}\left(x_{0}^{\prime} \sqrt{\beta_{0}}+\frac{\alpha_{0} x_{0}}{\sqrt{\beta_{0}}}\right)
\end{array}\right\} \quad \text { inserting above } \ldots
$$

$$
\begin{aligned}
& x(s)=\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left\{\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right\} x_{0}+\left\{\sqrt{\beta_{s} \beta_{0}} \sin \psi_{s}\right\} x_{0}^{\prime} \\
& x^{\prime}(s)=\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left\{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right\} x_{0}+\sqrt{\frac{\beta_{0}}{\beta_{s}}}\left\{\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right\} x_{0}^{\prime}
\end{aligned}
$$

which can be expressed ... for convenience ... in matrix form

$$
\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{0}
$$

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

* we can calculate the single particle trajectories between two locations in the ring, if we know the $\alpha \beta \gamma$ at these positions.
* and nothing but the $\alpha \beta \gamma$ at these positions.
9.) Periodic Lattices

$$
M=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta s}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

„This rather formidable looking we consider one complete revolution

$$
\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right) \quad \psi_{\text {turn }}=\int_{s}^{s+L} \frac{d s}{\beta(s)} \quad \begin{aligned}
& \psi_{\text {turn }}=\text { phaser advance }
\end{aligned}
$$

Tune: Phase advance per turn in units of 2π

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

Stability Criterion:

Question: what will happen, if we do not make too many mistakes and your particle performs one complete turn?

Matrix for 1 turn:

$$
M=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right)=\cos \psi \cdot \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}_{\boldsymbol{1}}+\sin \psi \underbrace{\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)}_{\boldsymbol{J}}
$$

Matrix for N turns:

$$
M^{N}=(1 \cdot \cos \psi+J \cdot \sin \psi)^{N}=1 \cdot \cos N \psi+J \cdot \sin N \psi
$$

The motion for N turns remains bounded, if the elements of M^{N} remain bounded

$$
\psi=\text { real } \quad \leftrightarrow \quad|\cos \psi| \leq 1 \quad \operatorname{Tr}(M) \leq 2
$$

stability criterion proof for the disbelieving collegues !!
Matrix for 1 turn: $\quad M=\left(\begin{array}{cc}\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\ -\gamma_{s} \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}\end{array}\right)=\cos \psi \cdot \underbrace{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}_{\boldsymbol{I}}+\sin \psi(\underbrace{\left(\begin{array}{cc}\alpha & \beta \\ -\gamma & -\alpha\end{array}\right)}_{\boldsymbol{I}}$

$$
\begin{aligned}
\boldsymbol{M}^{2} & =\left(\boldsymbol{I} \cos \psi_{1}+\boldsymbol{J} \sin \psi_{1}\right)\left(\boldsymbol{I} \cos \psi_{2}+\boldsymbol{J} \sin \psi_{2}\right) \\
& =\boldsymbol{I}^{2} \cos \psi_{1} \cos \psi_{2}+\boldsymbol{I} \boldsymbol{J} \cos \psi_{1} \sin \psi_{2}+\boldsymbol{J} \boldsymbol{I} \sin \psi_{1} \cos \psi_{2}+\boldsymbol{J}^{2} \sin \psi_{1} \sin \psi_{2}
\end{aligned}
$$

now ...

$$
I^{2}=I
$$

$$
\left.\begin{array}{l}
\boldsymbol{I} \boldsymbol{J}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) \\
\boldsymbol{J} \boldsymbol{I}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)
\end{array}\right\} \quad \boldsymbol{I} \boldsymbol{J}=\boldsymbol{J} \boldsymbol{I}
$$

$$
\boldsymbol{J}^{2}=\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right) *\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\alpha
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{2}-\gamma \beta & \alpha \beta-\beta \alpha \\
-\gamma \alpha+\alpha \gamma & \alpha^{2}-\gamma \beta
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=-\boldsymbol{I}
$$

$$
\boldsymbol{M}^{2}=\boldsymbol{I} \cos \left(\psi_{1}+\psi_{2}\right)+\boldsymbol{J} \sin \left(\psi_{1}+\psi_{2}\right)
$$

$$
\boldsymbol{M}^{2}=\boldsymbol{I} \cos (2 \psi)+\boldsymbol{J} \sin (2 \psi)
$$

10.) Transformation of α, β, γ

consider two positions in the storage ring: s_{0}, s

$$
\begin{aligned}
\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\boldsymbol{M} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s 0} & \\
M & =\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
\end{aligned}
$$

Betafunction in a Storage Ring

$$
\begin{array}{ll}
\text { since } \varepsilon=\operatorname{const}(\text { Liouville }): & \varepsilon=\beta_{s} x^{\prime 2}+2 \alpha_{s} x x^{\prime}+\gamma_{s} x^{2} \\
& \varepsilon=\beta_{0} x_{0}^{\prime 2}+2 \alpha_{0} x_{0} x_{0}^{\prime}+\gamma_{0} x_{0}^{2}
\end{array}
$$

... remember $W=C S^{\prime}-S C^{\prime}=1$

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{x}^{\prime}
\end{array}\right)_{0}=\boldsymbol{M}^{-1} *\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s} \\
M^{-1}=\left(\begin{array}{cc}
m_{22} & -m_{12} \\
-m_{21} & m_{11}
\end{array}\right)
\end{array}\right\} \rightarrow \begin{aligned}
& x_{0}=m_{22} x-m_{12} x^{\prime} \\
& x_{0}^{\prime}=-m_{21} x+m_{11} x^{\prime} \quad \ldots \text { inserting into } \varepsilon
\end{aligned} \begin{aligned}
& \varepsilon=\beta_{0}\left(m_{11} x^{\prime}-m_{21} x\right)^{2}+2 \alpha_{0}\left(m_{22} x-m_{12} x^{\prime}\right)\left(m_{11} x^{\prime}-m_{21} x\right)+\gamma_{0}\left(m_{22} x-m_{12} x^{\prime}\right)^{2}
\end{aligned}
$$

sort via x, x 'and compare the coefficients to get

The Twiss parameters α, β, γ can be transformed through the lattice via the matrix elements defined above.

$$
\begin{aligned}
& \beta(s)=m_{11}^{2} \beta_{0}-2 m_{11} m_{12} \alpha_{0}+m_{12}^{2} \gamma_{0} \\
& \alpha(s)=-m_{11} m_{21} \beta_{0}+\left(m_{12} m_{21}+m_{11} m_{22}\right) \alpha_{0}-m_{12} m_{22} \gamma_{0} \\
& \gamma(s)=m_{21}^{2} \beta_{0}-2 m_{21} m_{22} \alpha_{0}+m_{22}^{2} \gamma_{0}
\end{aligned}
$$

in matrix notation:

$$
\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s 2}=\left(\begin{array}{ccc}
m_{11}^{2} & -2 m_{11} m_{12} & m_{12}^{2} \\
-m_{11} m_{21} & m_{12} m_{21}+m_{22} m_{11} & -m_{12} m_{22} \\
m_{12}^{2} & -2 m_{22} m_{21} & m_{22}^{2}
\end{array}\right) *\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s 1}
$$

1.) this expression is important
2.) given the twiss parameters α, β, γ at any point in the lattice we can transform them and calculate their values at any other point in the ring.
3.) the transfer matrix is given by the focusing properties of the lattice elements, the elements of M are just those that we used to calculate single particle trajectories.

4.) go back to point 1.)

II.) Acceleration and Momentum Spread

The "not so ideal world "

Remember:

Beam Emittance and Phase Space Ellipse:
equation of motion:

$$
x^{\prime \prime}(s)-k(s) x(s)=0
$$

general solution of Hills equation:

$$
\boldsymbol{x}(\boldsymbol{s})=\sqrt{\varepsilon} \sqrt{\beta(\boldsymbol{s})} \cos (\psi(\boldsymbol{s})+\varphi)
$$

beam size:

$$
\sigma=\sqrt{\varepsilon \beta} \approx " m m^{\prime \prime}
$$

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

$$
\alpha(s)=\frac{-1}{2} \beta^{\prime}(s)
$$

* ε is a constant of the motion ... it is independent of ,"s" * parametric representation of an ellipse in the $x x^{6}$ space * shape and orientation of ellipse are given by α, β, γ

11.) Liouville during Acceleration

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

Beam Emittance corresponds to the area covered in the x, x^{\prime} Phase Space Ellipse

Liouville: Area in phase space is constant.

$$
\text { But so sorry ... } \varepsilon \neq \text { const ! }
$$

Classical Mechanics:
phase space $=$ diagram of the two canonical variables
position \& momentum

$$
\begin{array}{ll}
\boldsymbol{x} & \boldsymbol{p}_{\boldsymbol{x}} \\
p_{j}=\frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L=T-V=\text { kin. Energy }- \text { pot. Energy }
\end{array}
$$

According to Hamiltonian mechanics:
phase space diagram relates the variables q and p

$$
\begin{aligned}
& q=\text { position }=x \\
& p=m o m e n t u m=\gamma \boldsymbol{m} v=m c \gamma \beta_{x}
\end{aligned}
$$

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad ; \quad \beta_{x}=\frac{\dot{x}}{c}
$$

Liouvilles Theorem: $\quad \int p d q=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
\begin{gathered}
x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\boldsymbol{\beta}_{x}}{\beta} \quad \text { where } \boldsymbol{\beta}_{x}=\boldsymbol{v}_{x} / \boldsymbol{c} \\
\int p d q=m c \int \gamma \beta_{x} d x \\
\int p d q=m c \gamma \beta \underbrace{\int x^{\prime} d x}_{\varepsilon} \quad \Rightarrow \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma}
\end{gathered}
$$

the beam emittance shrinks during acceleration $\varepsilon \sim 1 / \gamma$

Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.

$$
\sigma=\sqrt{\varepsilon \beta}
$$

2.) At lowest energy the machine will have the major aperture problems, \rightarrow here we have to minimise
3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.

LHC mini beta optics at 7000 GeV

LHC injection
optics at 450 GeV

Example: HERA proton ring

injection energy: $40 \mathrm{GeV} \quad \gamma=43$
flat top energy: 920 GeV $\quad \gamma=980$
emittance $\varepsilon(40 \mathrm{GeV})=1.2 * 10^{-7}$

$$
\varepsilon(920 \mathrm{GeV})=5.1 * 10^{-9}
$$

12.) The , $\Delta p / p \neq 0$ " Problem

Linear Accelerator

Energy Gain per „Gap":

$$
\boldsymbol{W}=\boldsymbol{q} \boldsymbol{U}_{0} \sin \omega_{\boldsymbol{R} \boldsymbol{F}} \boldsymbol{t}
$$

drift tube structure at a proton linac
1928, Wideroe

* RF Acceleration: multiple application of the same acceleration voltage; brillant idea to gain higher energies
... but changing acceleration voltage
500 MHz cavities in an electron storage ring

Problem: panta rhei !!!

 (Heraklit: 540-480 v. Chr.)Example: HERA RF:

$$
\begin{array}{ll}
\sin \left(90^{\circ}\right)=1 \\
\sin \left(84^{\circ}\right)=0.994 & \frac{\Delta \boldsymbol{U}}{\boldsymbol{U}}=6.010^{-3}
\end{array}
$$

Bunch length of Electrons $\approx 1 \mathrm{~cm}$
typical momentum spread of an electron bunch:

$$
\frac{\Delta p}{p} \approx 1.0 \quad 10^{-3}
$$

13.) Dispersion: trajectories for $\Delta p / p \neq 0$

Force acting on the particle

$$
F=m \frac{d^{2}}{d t^{2}}(x+\rho)-\frac{m v^{2}}{x+\rho}=\boldsymbol{e} B_{y} v
$$

S
remember: $x \approx m m, \rho \approx m \ldots \rightarrow$ develop for small x

$$
\boldsymbol{m} \frac{d^{2} \boldsymbol{x}}{\boldsymbol{d t ^ { 2 }}}-\frac{\boldsymbol{m} v^{2}}{\rho}\left(1-\frac{x}{\rho}\right)=\boldsymbol{e} \boldsymbol{B}_{\boldsymbol{y}} \boldsymbol{v}
$$

consider only linear fields, and change independent variable: $t \rightarrow s \quad \boldsymbol{B}_{y}=\boldsymbol{B}_{0}+\boldsymbol{x} \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}$

$$
x^{\prime \prime}-\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)=\underbrace{\boldsymbol{e} v \boldsymbol{B}_{0}}_{p=p_{0}+\Delta p}+\frac{e x g}{m v}
$$

... but now take a small momentum error into account !!!

Dispersion:
develop for small momentum error

$$
\Delta p \ll p_{0} \Rightarrow \frac{1}{p_{0}+\Delta p} \approx \frac{1}{p_{0}}-\frac{\Delta p}{p_{0}^{2}}
$$

$$
\begin{aligned}
& x^{\prime \prime}-\frac{1}{\rho}+\frac{\boldsymbol{x}}{\rho^{2}} \approx \underbrace{\frac{\boldsymbol{e} \boldsymbol{B}_{0}}{\boldsymbol{p}_{0}}}_{-\frac{1}{\rho}}-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}} \boldsymbol{e} \boldsymbol{B}_{0}+\underbrace{\frac{\boldsymbol{x} \boldsymbol{e g}}{\boldsymbol{p}_{0}}}_{k * x}-\boldsymbol{x e g} \underbrace{\boldsymbol{\operatorname { c o g }} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}^{2}}}_{\approx 0} \\
& \boldsymbol{x}^{\prime \prime}+\frac{\boldsymbol{x}}{\rho^{2}} \approx \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} * \frac{\left(-\boldsymbol{e} \boldsymbol{B}_{0}\right)}{\boldsymbol{p}_{0}}+\boldsymbol{k} * \boldsymbol{x}=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} * \frac{1}{\rho}+\boldsymbol{k} * \boldsymbol{x} \\
& \boldsymbol{x}^{\prime \prime}+\frac{\boldsymbol{x}}{\rho^{2}}-\boldsymbol{k} \boldsymbol{x}=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \frac{1}{\rho} \quad \longrightarrow \quad \boldsymbol{x}^{\prime \prime}+\boldsymbol{x}\left(\frac{1}{\rho^{2}}-\boldsymbol{k}\right)=\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}} \frac{1}{\rho}
\end{aligned}
$$

Momentum spread of the beam adds a term on the r.h.s. of the equation of motion.
\rightarrow inhomogeneous differential equation.

Dispersion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-k\right)=\frac{\Delta p}{p} \cdot \frac{1}{\rho}
$$

general solution:

$$
x(s)=x_{h}(s)+x_{i}(s)
$$

$$
\left\{\begin{array}{l}
x_{h}^{\prime \prime}(s)+K(s) \cdot x_{h}(s)=0 \\
x_{i}^{\prime \prime}(s)+K(s) \cdot x_{i}(s)=\frac{1}{\rho} \cdot \frac{\Delta p}{p}
\end{array}\right.
$$

Normalise with respect to $\Delta p / p$:

$$
D(s)=\frac{x_{i}(s)}{\Delta p / p}
$$

Dispersion function $D(s)$

* is that special orbit, an ideal particle would have for $\Delta p / p=1$
* the orbit of any particle is the sum of the well known x_{β} and the dispersion
* as $D(s)$ is just another orbit it will be subject to the focusing properties of the lattice

Dispersion

Example: homogeneous dipole field

Matrix formalism:

e.g. matrix for a quadrupole lens:

$M_{f o c}=\left(\begin{array}{cc}\cos (\sqrt{|K|} s & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\ -\sqrt{|K|} \sin (\sqrt{|K| S} & \cos (\sqrt{|K| S}\end{array}\right)=\left(\begin{array}{ll}C & S \\ C^{\prime} & S^{\prime}\end{array}\right)$

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{x}{x^{\prime}}_{s}=\left(\begin{array}{ll}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)\binom{x}{x^{\prime}}_{0}+\frac{\Delta p}{p}\binom{D}{D^{\prime}}
$$

or expressed as 3×3 matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Example HERA

$$
\begin{aligned}
& x_{\beta}=1 \ldots 2 \mathrm{~mm} \\
& D(s) \approx 1 \ldots 2 \mathrm{~m} \\
& \Delta p /{ }_{p} \approx 1 \cdot 10^{-3}
\end{aligned}
$$

Amplitude of Orbit oscillation

 contribution due to Dispersion \approx beam size \rightarrow Dispersion must vanish at the collision pointCalculate D, D^{\prime}

$$
D(s)=S(s) \int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s) \int_{s 0}^{s 1} \frac{1}{\rho} S(\tilde{s}) d \tilde{s}
$$

Example: Drift

$$
M_{\text {Drift }}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right) \quad D(s)=S(s) \underbrace{\int_{s 0}^{s 1} \frac{1}{\rho} C(\tilde{s}) d \tilde{s}-C(s)}_{=0}
$$

Example: Dipole

$$
\begin{aligned}
& M_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|K|} s) & \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s \\
-\sqrt{|K|} \sin (\sqrt{|K|} s) & \cos (\sqrt{|K|} s)
\end{array}\right)_{0}
\end{aligned} \begin{gathered}
K=\frac{1}{\rho} \\
s=l_{B}
\end{gathered} \quad \begin{array}{ll}
M_{\text {Dipole }}=\left(\begin{array}{cc}
\cos \frac{l}{\rho} & \rho \sin \frac{l}{\rho} \\
-\frac{1}{\rho} \sin \frac{l}{\rho} & \cos \frac{l}{\rho}
\end{array}\right) & \rightarrow \\
D^{\prime}(s)=\sin \frac{l}{\rho}
\end{array}
$$

$$
K=\frac{1}{\rho^{2}}-/ /
$$

Example: Dispersion, calculated by an optics code for a real machine

$$
x_{D}=D(s) \frac{\Delta p}{p}
$$

* $D(s)$ is created by the dipole magnets
... and afterwards focused by the quadrupole fields

Mini Beta Section,

$$
D(s) \approx 1 \ldots 2 \mathrm{~m}
$$

Dispersion is visible

HERA Standard Orbit
dedicated energy change of the stored beam
HERA Dispersion Orbit
\rightarrow closed orbit is moved to a dispersions trajectory

$$
x_{b}=D(s) * \frac{\Delta p}{p}
$$

Attention: at the Interaction Points we require $D=D^{\prime}=0$

14.) Momentum Compaction Factor: α_{p}

particle with a displacement x to the design orbit \rightarrow path length dl ...

$$
\begin{aligned}
\frac{d l}{d s} & =\frac{\rho+x}{\rho} \\
\rightarrow d l & =\left(1+\frac{x}{\rho(s)}\right) d s
\end{aligned}
$$

circumference of an off-energy closed orbit

$$
\begin{aligned}
& l_{\Delta E}=\oint d l=\oint\left(1+\frac{x_{\Delta E}}{\rho(s)}\right) d s \\
& \text { remember: } \\
& x_{\Delta E}(s)=D(s) \frac{\Delta p}{p} \\
& \text { * The lengthening of the orbit for off-momentum } \\
& \text { particles is given by the dispersion function } \\
& \text { and the bending radius. }
\end{aligned}
$$

Definition: $\quad \frac{\delta l_{\varepsilon}}{L}=\alpha_{p} \frac{\Delta p}{p}$

$$
\rightarrow \alpha_{p}=\frac{1}{L} \oint\left(\frac{D(s)}{\rho(s)}\right) d s
$$

For first estimates assume: $\quad \frac{1}{\rho}=$ const.

$$
\begin{gathered}
\int_{\text {dipoles }} \boldsymbol{D}(\boldsymbol{s}) d \boldsymbol{d} \approx \boldsymbol{l}_{\Sigma(\text { dipoles })} \cdot\langle\boldsymbol{D}\rangle_{\text {dipole }} \\
\alpha_{p}=\frac{1}{\boldsymbol{L}} l_{\Sigma(\text { dipoles })} \cdot\langle\boldsymbol{D}\rangle \frac{1}{\rho}=\frac{1}{\boldsymbol{L}} 2 \pi \rho \cdot\langle\boldsymbol{D}\rangle \frac{1}{\rho} \quad \rightarrow \quad \alpha_{p} \approx \frac{2 \pi}{\boldsymbol{L}}\langle\boldsymbol{D}\rangle \approx \frac{\langle\boldsymbol{D}\rangle}{\boldsymbol{R}}
\end{gathered}
$$

Assume: $v \approx c$

$$
\rightarrow \quad \frac{\delta T}{T}=\frac{\delta l_{\varepsilon}}{L}=\alpha_{p} \frac{\Delta p}{p}
$$

α_{p} combines via the dispersion function the momentum spread with the longitudinal motion of the particle.

15.) Gradient Errors

Matrix in Twiss Form

Transfer Matrix from point , 0 " in the lattice to point "s":

$$
\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{\left(\alpha_{0}-\alpha_{s}\right) \cos \left(\psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right.}{\sqrt{\beta_{s} \beta_{0}}} & \sqrt{\frac{\beta_{0}}{\beta_{s}}}\left(\cos \left(\psi_{s}-\alpha_{0} \sin \psi_{s}\right)\right.
\end{array}\right)
$$

For one complete turn the Twiss parameters have to obey periodic bundary conditions:

$$
\begin{aligned}
& \beta(\boldsymbol{s}+\boldsymbol{L})=\beta(\boldsymbol{s}) \\
& \alpha(\boldsymbol{s}+\boldsymbol{L})=\alpha(\boldsymbol{s}) \\
& \gamma(\boldsymbol{s}+\boldsymbol{L})=\gamma(\boldsymbol{s})
\end{aligned}
$$

$$
\boldsymbol{M}(\boldsymbol{s})=\left(\begin{array}{cc}
\cos \psi_{\text {turn }}+\alpha_{s} \sin \psi_{\text {turn }} & \beta_{s} \sin \psi_{\text {turn }} \\
-\gamma_{s} \sin \psi_{s} & \cos \psi_{\text {turn }}-\alpha_{s} \sin \psi_{\text {turn }}
\end{array}\right)
$$

Quadrupole Error in the Lattice
optic perturbation described by thin lens quadrupole
$\boldsymbol{M}_{\text {dist }}=\boldsymbol{M}_{\Delta \boldsymbol{k}} \cdot \boldsymbol{M}_{0}=\underbrace{\left(\begin{array}{cc}1 & 0 \\ \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} & 1\end{array}\right)}_{\text {quad error }} \cdot(\underbrace{\left.\begin{array}{cc}\cos \psi_{\text {turn }}+\alpha \sin \psi_{\text {turn }} & \beta \sin \psi_{\text {turn }} \\ -\gamma \sin \psi_{\text {turn }} & \cos \psi_{\text {turn }}-\alpha \sin \psi_{\text {turn }}\end{array}\right)}_{\text {ideal storage ring }}$

S

$$
\boldsymbol{M}_{d i s t}=\left(\begin{array}{cc}
\cos \psi_{0}+\alpha \sin \psi_{0} & \beta \sin \psi_{0} \\
\Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s}\left(\cos \psi_{0}+\alpha \sin \psi_{0}\right)-\gamma \sin \psi_{0} & \Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}+\cos \psi_{0}-\alpha \sin \psi_{0}
\end{array}\right)
$$

rule for getting the tune

$$
\boldsymbol{\operatorname { T r a c e }}(\boldsymbol{M})=2 \cos \psi=2 \cos \psi_{0}+\Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}
$$

Quadrupole error \rightarrow Tune Shift

$$
\psi=\psi_{0}+\Delta \psi \quad \longrightarrow \quad \cos \left(\psi_{0}+\Delta \psi\right)=\cos \psi_{0}+\frac{\Delta \boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}}{2}
$$

remember the old fashioned trigonometric stuff and assume that the error is small !!!

$$
\cos \psi_{0} \underbrace{\cos \Delta \psi}_{\approx 1}-\sin \psi_{0} \underbrace{\sin \Delta \psi=}_{\approx \Delta \psi} \cos \psi_{0}+\frac{\boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta \sin \psi_{0}}{2}
$$

$$
\Delta \psi=\frac{\boldsymbol{k} \boldsymbol{d} \boldsymbol{s} \beta}{2}
$$

and referring to Q instead of ψ :

$$
\begin{gathered}
\psi=2 \pi Q \\
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k(s) \beta(s) d s}{4 \pi}
\end{gathered}
$$

! the tune shift is proportional to the β-function at the quadrupole
!! field quality, power supply tolerances etc are much tighter at places where β is large
!!! mini beta quads: $\beta \approx 1900 \mathrm{~m}$ arc quads: $\beta \approx 80 \mathrm{~m}$
!!!!! $\quad \beta$ is a measure for the sensitivity of the beam
a quadrupol error leads to a shift of the tune:

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k \beta(s)}{4 \pi} d s \approx \frac{\Delta k l_{\text {quad }} \bar{\beta}}{4 \pi}
$$

Example: measurement of β in a storage ring: tune spectrum

16.) Chromaticity: A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet

$$
\alpha=\frac{\int B d l}{p / e}
$$

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

focusing lens

$$
k=\frac{g}{p / e}
$$

to high energy to low energy ideal energy

Chromaticity: Q^{\prime}

$$
k=\frac{g}{p / e} \quad p=p_{0}+\Delta p
$$

in case of a momentum spread:

$$
\begin{gathered}
\boldsymbol{k}=\frac{\boldsymbol{e} \boldsymbol{g}}{\boldsymbol{p}_{0}+\Delta \boldsymbol{p}} \approx \frac{\boldsymbol{e}}{\boldsymbol{p}_{0}}\left(1-\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}_{0}}\right) \boldsymbol{g}=\boldsymbol{k}_{0}+\Delta \boldsymbol{k} \\
\Delta k=-\frac{\Delta p}{p_{0}} k_{0}
\end{gathered}
$$

... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta Q=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} k_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta Q=Q^{\prime} \frac{\Delta p}{p} ; \quad Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

... what is wrong about Chromaticity:

Problem: chromaticity is generated by the lattice itself !!

Q^{\prime} is a number indicating the size of the tune spot in the working diagram, Q^{\prime} is always created if the beam is focussed
\rightarrow it is determined by the focusing strength k of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\begin{aligned}
& Q^{\prime}=250 \\
& \Delta p / p=+/-0.2 * 10^{-3} \\
& \Delta Q=0.256 \ldots 0.36
\end{aligned}
$$

\rightarrow Some particles get very close to resonances and are lost
in other words: the tune is not a point it is a pancake

Correction of Q^{\prime} :

1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

2.) apply a magnetic field that rises quadratically with \boldsymbol{x} (sextupole field)

$$
\left.\begin{array}{ll}
B_{x}=\tilde{g} x z \\
B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x \quad \begin{aligned}
& \text { linear rising } \\
& \text { "gradient": }
\end{aligned}
$$

Sextupole Magnets:

sext
geometry

normalised quadrupole strength:

$$
\begin{aligned}
& k_{\text {sext }}=\frac{\tilde{g} x}{p / e}=m_{\text {sext. }} x \\
& k_{\text {sext }}=m_{\text {sext. }} D \frac{\Delta p}{p}
\end{aligned}
$$

corrected chromaticity:

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint\{K(s)-m D(s)\} \beta(s) d s
$$

Chromaticity in the FoDo Lattice

$$
Q^{\prime}=\frac{-1}{4 \pi} * \int k(s) \beta(s) d s
$$

β-Function in a FoDo $\quad \hat{\beta}=\frac{\left(1+\sin \frac{\psi_{\text {cell }}}{2}\right) L}{\sin \psi_{\text {cell }}} \quad \breve{\beta}=\frac{\left(1-\sin \frac{\psi_{\text {cell }}}{2}\right) L}{\sin \psi_{\text {cell }}}$

$$
\begin{aligned}
Q^{\prime} & =\frac{-1}{4 \pi} N^{*} \frac{\hat{\beta}-\breve{\beta}}{\boldsymbol{f}_{Q}} \\
Q^{\prime} & =\frac{-1}{4 \pi} N^{*} \frac{1}{f_{Q}} *\left\{\frac{L\left(1+\sin \frac{\psi_{\text {cell }}}{2}\right)-L\left(1-\sin \frac{\psi_{\text {cell }}}{2}\right)}{\sin \mu}\right\}
\end{aligned}
$$

using some TLC transformations ... ξ can be expressed in a very simple form:

$$
\begin{aligned}
& Q^{\prime}=\frac{-1}{4 \pi} N^{*} * \frac{1}{f_{Q}} * \frac{2 L \sin \frac{\psi_{\text {cell }}}{2}}{\sin \psi_{\text {cell }}} \\
& Q^{\prime}=\frac{-1}{4 \pi} N^{*} \frac{1}{f_{Q}} * \frac{L \sin \frac{\psi_{\text {cell }}}{2}}{\sin \frac{\psi_{\text {cell }}}{2} \cos \frac{\psi_{\text {cell }}}{2}} \\
& \begin{array}{l}
Q_{\text {cell }}^{\prime}=\frac{-1}{4 \pi f_{Q}} * \frac{L \tan \frac{\psi_{\text {cell }}}{2}}{\sin \frac{\psi_{\text {cell }}}{2}} \\
\\
Q_{\text {cell }}^{\prime}=\frac{-1}{\pi} * \tan \frac{\psi_{\text {cell }}}{2}
\end{array} \quad \text { putting } \ldots \\
& \sin \frac{\psi_{\text {cel }}}{2}=\frac{L}{4 f_{Q}}
\end{aligned}
$$

contribution of one FoDo Cell to the chromaticity of the ring:

Chromaticity

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint K(s) \beta(s) d s
$$

question: main contribution to $\boldsymbol{\xi}$ in a lattice ...?

17.) Résumé:

$$
\text { beam rigidity: } \quad B \cdot \rho=p / q
$$

bending strength of a dipole:

$$
\frac{1}{\rho}\left[m^{-1}\right]=\frac{0.2998 \cdot B_{0}(T)}{p(G e V / c)}
$$

focusing strength of a quadrupole:

$$
k\left[m^{-2}\right]=\frac{0.2998 \cdot g}{p(\mathrm{GeV} / \mathrm{c})}
$$

focal length of a quadrupole:
$f=\frac{1}{k \cdot l_{q}}$
equation of motion:
$x^{\prime \prime}+K x=\frac{1}{\rho} \frac{\Delta p}{p}$
matrix of a foc. quadrupole:

$$
x_{s 2}=M \cdot x_{s 1}
$$

$$
M=\left(\begin{array}{cc}
\cos \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sin \sqrt{|K|} l \\
-\sqrt{|K|} \sin \sqrt{|K|} l & \cos \sqrt{|K|} l
\end{array}\right), \quad M=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)
$$

$\varepsilon \propto \frac{1}{\beta \gamma}$
beta function in a drift:

$$
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2}
$$

\ldots and for $\alpha=0$

$$
\beta(s)=\beta_{0}+\frac{s^{2}}{\beta_{0}}
$$

particle trajectory for $\Delta p / p \neq 0$ inhomogenious equation:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}-\boldsymbol{k}\right)=\frac{\Delta \boldsymbol{p}}{p_{0}} \frac{1}{\rho}
$$

... and its solution:
$x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p}$ momentum compaction:
$\frac{\delta \boldsymbol{l}_{\varepsilon}}{\boldsymbol{L}}=\alpha_{c p} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}} \quad \alpha_{c p} \approx \frac{2 \pi}{\boldsymbol{L}}\langle\boldsymbol{D}\rangle \approx \frac{\langle\boldsymbol{D}\rangle}{\boldsymbol{R}}$
quadrupole error:
$\Delta \boldsymbol{Q}=\int_{s 0}^{s 0+l} \frac{\Delta \boldsymbol{K}(\boldsymbol{s}) \beta(\boldsymbol{s}) \boldsymbol{d} \boldsymbol{s}}{4 \pi}$
chromaticity:
$\boldsymbol{Q}^{\prime}=-\frac{1}{4 \pi} \oint \boldsymbol{K}(\boldsymbol{s}) \beta(\boldsymbol{s}) d \boldsymbol{s}$

18.) Bibliography

1.) Klaus Wille, Physics of Particle Accelerators and Synchrotron Radiation Facilicties, Teubner, Stuttgart 1992
2.) M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
3.) H. Wiedemann, Particle Accelerator Physics (Springer-Verlag, Berlin, 1993)
4.) A. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering (World Scientific 1998)
5.) Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: $5^{\text {th }}$ general acc. phys. course CERN 94-01
6.) Bernhard Holzer: Lattice Design, CERN Acc. School: Interm. Acc.phys course, http://cas.web. cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
7.) Frank Hinterberger: Physik der Teilchenbeschleuniger, Springer Verlag 1997
9.) Mathew Sands: The Physics of e+e-Storage Rings, SLAC report 121, 1970
10.) D. Edwards, M. Syphers : An Introduction to the Physics of Particle Accelerators, SSC Lab 1990

