
RF measurements I: signal receiving techniques

F. Caspers
CERN, Geneva, Switzerland

Abstract
For the characterization of components, systems and signals in the RF and mi-
crowave range, several dedicated instruments are in use. In this paperthe fun-
damentals of the RF-signal sampling technique, which has found widespread
applications in ‘digital’ oscilloscopes and sampling scopes, are discussed.The
key element in these front-ends is the Schottky diode which can be used either
as an RF mixer or as a single sampler. The spectrum analyser has become an
absolutely indispensable tool for RF signal analysis. Here the front-endis the
RF mixer as the RF section of modern spectrum analysers has a rather complex
architecture. The reasons for this complexity and certain working principles
as well as limitations are discussed. In addition, an overview of the develop-
ment of scalar and vector signal analysers is given. For the determinationof
the noise temperature of a one-port and the noise figure of a two-port, basic
concepts and relations are shown. A brief discussion of commonly used noise
measurement techniques concludes the paper.

1 Introduction

In the early days of RF engineering the available instrumentation for measurements was rather limited.
Besides elements acting on the heat developed by RF power (bimetal contactsand resistors with very high
temperature coefficient) only point/contact diodes, and to some extent vacuum tubes, were available as
signal detectors. For several decades the slotted measurement line [1] was the most used instrument
for measuring impedances and complex reflection coefficients. Around 1960 the tedious work with
such coaxial and waveguide measurement lines became considerably simplified with the availability of
the vector network analyser. At the same time the first sampling oscilloscopes with1 GHz bandwidth
arrived on the market. This was possible due to progress in solid-state (semiconductor) technology and
advances in microwave elements (microstrip lines). Reliable, stable, and easilycontrollable microwave
sources are the backbone of spectrum and network analysers as wellas sensitive (low noise) receivers.
This paper will only treat signal receiving devices such as spectrum analysers and oscilloscopes. For an
overview of network analysis tools seeRF measurements II: network analysis.

2 Basic elements and concepts

Before discussing several measurement devices, a brief overview ofthe most important components in
such devices and some basic concepts are presented.

2.1 Decibel

Since the unit dB is frequently used in RF engineering a short introduction and definition of terms is
given here. The decibel is the unit used to express relative differences in signal power. It is expressed as
the base 10 logarithm of the ratio of the powers of two signals:

P [dB] = 10 · log(P/P0) . (1)

It is also common to express the signal amplitude in dB. Since power is proportional to the square of a
signal’s amplitude, the voltage in dB is expressed as follows:

V [dB] = 20 · log(V/V0) . (2)



Table 1: Overview of dB key values and their conversion into power andvoltage ratios.

Power ratio Voltage ratio
−20 dB 0.01 0.1
−10 dB 0.1 0.32
−3 dB 0.50 0.71
−1 dB 0.74 0.89
0 dB 1 1
1 dB 1.26 1.12
3 dB 2.00 1.41
10 dB 10 3.16
20 dB 100 10
n·10 dB 10n 10n/2

In Eqs. (1) and (2)P0 andV0 are the reference power and voltage, respectively. A given value in dB is
the same for power ratios as for voltage ratios. Please note that there are no ‘power dB’ or ‘voltage dB’
as dB values always express a ratio.

Conversely, the absolute power and voltage can be obtained from dB values by

P = P0 · 10
P [dB]
10 , (3)

V = V0 · 10
V [dB]
20 . (4)

Logarithms are useful as the unit of measurement because

1. signal power tends to span several orders of magnitude and

2. signal attenuation losses and gains can be expressed in terms of subtraction and addition.

Table 1 helps to indicate the order of magnitude associated with dB.

Frequently dB values are expressed using a special reference leveland not SI units. Strictly speak-
ing, the reference value should be included in parentheses when givinga dB value, e.g., +3 dB (1 W)
indicates 3 dB atP0 = 1 watt, thus 2 W. However, it is more common to add some typical reference
values as letters after the unit, for instance, dBm defines dB using a reference level ofP0 = 1 mW. Thus,
0 dBm correspond to−30 dBW, where dBW indicates a reference level ofP0 = 1 W. Often a reference
impedance of 50Ω is assumed. Other common units are

– dBmV for the small voltages withV0 = 1 mV and

– dBmV/m for the electric field strength radiated from an antenna with reference field strengthE0 =
1 mV/m

2.2 The RF diode

One of the most important elements inside all sophisticated measurement devicesis the fast RF diode
or Schottky diode. The basic metal-semiconductor junction has an intrinsically very fast switching time
of well below a picosecond, provided that the geometric size and hence thejunction capacitance of the
diode is small enough. However, this unavoidable and voltage dependentjunction capacity will lead to
limitations of the maximum operating frequency.

The equivalent circuit of such a diode is depicted in Fig. 1 and an example of a commonly used
Schottky diode can be seen in Fig. 2. One of the most important properties ofany diode is its character-
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Fig. 1: The equivalent circuit of a diode

Fig. 2: A commonly used Schottky diode. The RF input of this detectordiode is on the left and the video output
on the right (figure courtesy Agilent)

istic which is the relation of current as a function of voltage. This relation is described by the Richardson
equation [2]:

I = AARCT
2exp

(

−
qφB

kT

)[

exp

(

qVJ

kT

)

− M

]

, (5)

whereA is the area in cm2, ARC the modified Richardson constant,k Boltzmann’s constant,T the
absolute temperature,φB the barrier height in volts,VJ the external Voltage across the depletion layer, M
the avalanche multiplication factor andI the diode current.

This relation is depicted graphically for two diodes in Fig. 3. As can be seen,the diode is not an
ideal commutator (Fig. 4) for small signals. Note that it is not possible to apply big signals, since this
kind of diode would burn out. However, there exist rather large power versions of Schottky diodes which
can stand more than 9 kV and several 10 A but they are not suitable in microwave applications due to
their large junction capacity.

The Richardson equation can be roughly approximated by a simpler equation[2]:

I = Is

[

exp

(

VJ

0.028

)

− 1

]

. (6)

This approximation can be used to show that the RF rectification is linked to the second derivation
(curvature) of the diode characteristic.
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Fig. 3: Current as a function of voltage for different diode types (LBSD = low barrier Schottky diode)
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Fig. 4: The current-voltage relation of an ideal commutator with threshold voltage

If the DC current is held constant by a current regulator or a large resistor assuming external DC
bias1, then the total junction current, including RF is

I = I0 = i0 cosωt (7)

and hence the current-voltage relation can be written as

VJ = 0.028 ln

(

IS + I0 + i cosωt
IS

)

= 0.028 ln

(

I0 + IS

IS

)

+ 0.028 ln

(

i cosωt
I0 + IS

)

. (8)

If the RF currentI is small enough, the second term can be approximated by Taylor expansion:

VJ ≈ 0.028 ln

(

I0 + IS

IS

)

+0.028

[

i cosωt
I0 + IS

−
i2cos2ωt

2(I0 + IS)2
+ . . .

]

= VDC+VJ cosωt+higher order terms

(9)
With the identity cos2 = 0.5, the DC and the RF voltages are given by

VJ =
0.028

I0 + IS
i = RSi and VDC = 0.028 ln

(

1 +
I0
IS

)

−
0.0282

4(I0 + IS)2
= V0 −

V 2
J

0.112
. (10)

The region where the output voltage is proportional to the input power is called the square-law region
(Fig. 5). In this region the input power is proportional to the square of theinput voltage and the output

1Most diodes do not need an external bias, since they have a DC return self-bias.
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Fig. 5: Relation between input power and output voltage.

signal is proportional to the input power, hence the name square-law region.

The transition between the linear region and the square-law region is typicallybetween−10 and
−20 dB (Fig. 5).

There are fundamental limitations when using diodes as detectors. The output signal of a diode
(essentially DC or modulated DC if the RF is amplitude modulated) does not contain aphase information.
In addition, the sensitivity of a diode restricts the input level range to about−60 dBm at best which is
not sufficient for many applications.

The minimum detectable power level of an RF diode is specified by the ‘tangential sensitivity’
which typically amounts to−50 to−55 dBm for 10 MHz video bandwidth at the detector output [3].

To avoid these limitations, another method of operating such diodes is needed.

2.3 Mixer

For the detection of very small RF signals a device that has a linear response over the full range (from
0 dBm ( = 1mW) down to thermal noise =−174 dBm/Hz = 4·10−21 W/Hz) is preferred. An RF mixer
provides these features using 1, 2, or 4 diodes in different configurations (Fig. 6). A mixer is essentially
a multiplier with a very high dynamic range implementing the function:

f1(t)f2(t) with f1(t) = RF signal andf2(t) = LO signal , (11)

or more explicitly for two signals with amplitudeai and frequencyfi (i = 1, 2):

a1 cos(2πf1t+ ϕ) · a2 cos(2πf2t) =
1

2
a1a2 [cos((f1 + f2)t+ ϕ) + cos((f1 − f2)t+ ϕ)] . (12)

Thus we obtain a response at the IF (intermediate frequency) port that isat the sum and difference
frequency of the LO (local oscillator= f1) and RF (= f2) signals.

Examples of different mixer configurations are shown in Fig. 6.
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Fig. 6: Examples of different mixer configurations

As can be seen from Fig. 6, the mixer uses diodes to multiply the two ingoing signals. These
diodes function as a switch, opening different circuits with the frequencyof the LO signal (Fig. 7).

The response of a mixer in time domain is depicted in Fig. 8.

The output signal is always in the ‘linear range’ provided that the mixer is not in saturation with
respect to the RF input signal. Note that for the LO signal the mixer should always be in saturation to
make sure that the diodes work as a nearly ideal switch. The phase of the RF signal is conserved in the
output signal available form the RF output.

2.4 Amplifier

A linear amplifier augments the input signal by a factor which is usually indicatedin decibel. The ratio
between the output and the input signal is called the transfer function and itsmagnitude – the voltage
gainG – is measured in dB and given as

G[dB] = 20 ·
VRFout

VRFin
or

VRFout

VRFin
= 20 · logG[lin] . (13)

The circuit symbol of an amplifier is shown in Fig. 9 together with its S-matrix.
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Fig. 7: Two circuit configurations interchanging with the frequency of the LO where the switches represent the
diodes

RF
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Fig. 8: Time domain response of a mixer
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Fig. 9: Circuit symbol an S-matrix of an ideal amplifier

The bandwidth of an amplifier specifies the frequency range where it is usually operated. This
frequency range is defined by the−3 dB points2 with respect to its maximum or nominal transmission
gain.

In an ideal amplifier the output signal would be proportional to the input signal. However, a
real amplifier is nonlinear, such that for larger signals the transfer characteristic deviates from its linear
properties valid for small signal amplification. When increasing the output power of an amplifier, a
point is reached where the small signal gain becomes reduced by 1 dB (Fig. 10). This output power level
defines the 1 dB compression point, which is an important measure of quality for any amplifier (low level
as well as high power).

The transfer characteristic of an amplifier can be described in terms which are commonly used
for RF engineering, i.e., the S-matrix (for further details see the paper on S-matrices of this school). As
implicitly contained in the S-matrix, the amplitude and phase information of any spectral component are

2The−3 dB points are the points left and right of a reference value (e.g. a local maximum of a curve) that are 3 dB lower
than the reference.
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Fig. 10: Example for the 1dB compression point [4].

preserved when passing through an ideal amplifier. For a real amplifier the elementG = S21 (transmis-
sion from port 1 to port 2) is not a constant but a complex function of frequency. Also the elements S11

and S22 are not 0 in reality.

2.5 Interception points of nonlinear devices

Important characteristics of nonlinear devices are the interception points.Here only a brief overview will
be given. For further information the reader is referred to Ref. [4].

One of the most relevant interception points is the interception point of 3rd order (IP3 point). Its
importance derives from its straightforward determination, plotting the input versus the output power in
logarithmic scale (Fig. 10). The IP3 point is usually not measured directly, but extrapolated from mea-
surement data at much smaller power levels in order to avoid overload and damage of the device under
test (DUT). If two signals(f1, f2 > f1) which are closely spaced by∆f in frequency are simultaneously
applied to the DUT, the intermodulation products appear at +∆f abovef2 and at− ∆f belowf1.

The transfer functions or weakly nonlinear devices can be approximatedby Taylor expansion.
Usingn higher order terms on one hand and plotting them together with an ideal linear device in log-

arithmic scale leads to two lines with different slopes (xn
log
→ n · log x). Their intersection point is

the intercept point ofnth order. These points provide important information concerning the quality of
nonlinear devices.

In this context, the aforementioned 1 dB compression point of an amplifier is theintercept point
of first order.

Similar characterization techniques can also be applied with mixers which with respect to the LO
signal cannot be considered a weakly nonlinear device.

2.6 The superheterodyne concept

The word superheterodyne is composed of three parts: super (Latin: over),ǫτǫρω (hetero, Greek: differ-
ent) andδυναµισ (dynamis, Greek: force) and can be translated as two forces superimposed3. Different

3The direct translation (roughly) would be: Another force becomes superimposed.
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abbrevations exist for the superheterodyne concept. In the US it is often referred to by the simple word
‘heterodyne’ and in Germany one can find the terms ‘super’ or ‘superhet’. The ‘weak’ incident signal
is subjected to nonlinear superposition (i.e., mixing or multiplication) with a ‘strong’sine wave from a
local oscillator. At the mixer output we then get the sum and difference frequencies of the signal and
local oscillator. The LO signal can be tuned such that the output signal is always at the same frequency
or in a very narrow frequency band. Therefore a fixed frequencybandpass with excellent transfer char-
acteristics can be used which is cheaper and easier than a variable bandpass with the same performance.
A well-known application of this principle is any simple radio receiver (Fig. 11).

BP

RF amplifier Mixer

Local oscillator (often locked to a quarz)

Bandpass filter

IF amplifier

Demodulator

Audio amplifier

Fig. 11: Schematic drawing of a superheterodyne receiver

3 Oscilloscope

An oscilloscope is typically used for acquisition, display, and measurement of signals in time domain.
The bandwidth of real-time oscilloscopes is limited in most cases to 10 GHz. For higher bandwidth on
repetitive signals the sampling technique has been in use since about 1960.One of the many interest-
ing features of modern oscilloscopes is that they can change the sampling rate through the sweep in a
programmed manner. This can be very helpful for detailed analysis in certain time windows. Typical
sampling rates are between a factor 2.5 and 4 of the maximum frequency (according to the Nyquist
theorem a real-time minimum sampling rate of twice the maximum frequencyfmax is required).

Sequential sampling (Fig. 12) requires a pre-trigger (required to open the sampling gate) and per-
mits a non-real-time bandwidth of more than 100 GHz with modern scopes.

Random sampling (rarely used these days, Fig. 13) was developed about 40 years ago (around
1970) for the case no pre-trigger was available and relying on a strictly periodic signal to predict a
pre-trigger from the measured periodicity.

Sampling is discussed in more detail in the following. Consider a bandwidth-limited timefunction
s(t) and its Fourier transform S(f ). The signal s(t) is sampled (multiplied) by a series of equidistantδ-
pulses p(t) [5]:

p(t) =
+∞
∑

n=−∞

δ(t− nTs) = III(t/Ts) (14)

where the symbolIII is derived from the Russian letter III and is pronounced ‘sha’. It represents a series
of δ-pulses.

9



Fig. 12: Illustration of sequential sampling

Fig. 13: Illustration of random sampling

The sampled time functions ss(t) is

ss(t) = s(t)p(t) = s(t)III(t/Ts)

Ss(f) = S(f) ∗
1

Ts
III(Tsf) (15)

Ss(f) =
1

Ts

+∞
∑

n=−∞

S(f −mF ) with F =
1

Ts
. (16)

Note that the spectrum is repeated periodically by the sampling process. Forproper reconstruction, one
ensures that overlapping as in Fig. 14 does not occur.

If the spectra overlap as in Fig. 14 we have undersampling, the sampling rateis too low. If big
gaps occur between the spectra (Fig. 15) we have oversampling, the sampling rate is too high. But this
scheme applies in most cases. In the limit we arrive at a Nyquist rate of1/Ts = 2fg = F .

The rules mentioned above are of great importance for all ‘digital’ oscilloscopes. The performance
(conversion time, resolution) of the input ADC (analog digital converter) isthe key element for single-
shot rise time. With several ADCs in time-multiplex one obtains these days 8-bit vertical resolution at
20 GSa/s = 10 GHz bandwidth.

Another way to look at the sampling theorem (Nyquist) is to consider the samplinggate as a
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Fig. 14: Periodically repeated component of the Fourier Transform of ss(t) [5]

f

LOW PASS HLP(f)

|Ss(f)|

–fg +fg–1/Ts +1/Ts

Fig. 15: Reconstruction of S(f) via ideal lowpass from Ss(f) (slightly oversampled)

harmonic mixer (Fig. 16).

s(t)

Ri

q(t)

CS RL

Fig. 16: Sampling gate as harmonic mixer; Cs = sampling capacitor [6]

This is basically a nonlinear element (e.g., a diode) that gives product termsof two signals super-
imposed on its nonlinear characteristics.

The switch in Fig. 16 may be considered as a periodically varying resistor R(t) actuated by q(t).
If q(t) is not exactly aδ-function then the higher harmonics decrease withf and the spectral density
becomes smaller at high frequencies.

For periodic signals one may apply a special sampling scheme. With each signal event the sam-
pling time is moved by a small fraction∆t along the signal to be measured (Fig. 17). The highest possible
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∆t 2∆t 3∆t 4∆t

Fig. 17: Signal reconstruction with sampling shift by∆t per pulse [7]

signal frequency for this sequential sampling is linked to the width of the sampling pulse. This sampling
or gating pulse should be as short as possible otherwise signal averaging during the ‘gate-open’ period
would take place.

The sampling pulse is often generated by step-recovery diodes (snap-off diodes) which change
their conductivity very rapidly between the conducting and non-conducting state. The actual switch
(Schottky diode) becomes conductive during the gate pulse and chargesa capacitor (sample and hold
circuit) but not to the full signal voltage. Assuming a time constantRiCs much bigger than the ‘open’
time of the sampling gate, we obtain approximately (Fig. 18)

ic(t) =
s(t)

Ri +Rd(t)
. (17)

After the sampling process we have [6]

s(t)

Ri

q(t)

CS uC(t) s(t)

Rd(t)

CS

Ri

Fig. 18: Equivalent circuit for the sample-and-hold element [6]

uc(t) =
1

Cs

∫ +∞

−∞

ic(t)dt =
∫ +∞

−∞

s(t)
1

Cs(Ri +Rd(t))
, (18)

with the control signal for the Schottky diode being

q(t) =
1

Cs(Ri +Rd(t))
. (19)

The control or switching signal is moved byτ or n∆t (Fig. 21) with respect to the signal to be sampled
s(t):

uc(τ) =

∫ +∞

−∞

s(t)q(t− τ)dt . (20)
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s(t)q(t− τ )

Fig. 19: Sampling with finite-width sampling pulse

Note that the time constantRiCs is much bigger than the length of q(t). Cs is only charged to a fraction
of s(t) (Fig. 19). The sampling efficiencyη is defined as

η =
uc(τ)

s(τ)
. (21)

In order to circumvent the problem of poor sampling efficiency a feedback loop technique (integrator)
can be used. This integrator amplifies the voltage step on the sampling capacitor, after the sampling gate
is closed, exactly by a factor1/η. If the sampling gate has not moved with respect to the trigger, the
sampling capacitor is already charged to the correct voltage uc(τ) and there is no change. Otherwise the
change in uc just amounts to the change in signal voltage.

The sampling gate is interesting from a technological point of view. As aperture times (Fig. 19)
may be of the order of 10 ps, MIC (Microwave Integrated Circuit) technology has been used for many
years. Today, the latest generation of sampling heads (50 GHz) is even one step further with MMIC
(Monolithic Microwave Integrated Circuits) technology.

In MIC technology the sampling pulse is applied to a slotline in the ground-plane metallization of
a microstrip substrate (Fig. 20). This slot line has a length of some 10 mm and is shorted at both ends.

Fig. 20: Sampling circuits [7]

With a voltage across the slotline the fast Schottky diodes open and connectthe microstrip line via a
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Table 2: Features of modern sampling scopes

Rise time: 7 ps ≈ 50 GHz
Jitter ≈ 1.5 ps
Static operation possible, no minimum repetition rate required.
Optical sampling (mode-locked laser), 1 ps risetime ≈ 350 GHz

through hole to the sampling capacitorCs. Owing to the particular topology of the circuit the signal line
(microstrip) is decoupled from the sampling pulse line over a wide frequencyrange (Fig. 20).

To move the sampling pulse by∆t for each event requires a pre-trigger (several 10 ns ahead), to
start a fast-ramp generator. The intersection (comparator) of the ramp generator output with a staircase-
like reference voltage defines the sampling time and∆t (Fig. 21)

∆t 2∆t 3∆t 4∆t 5∆t

FAST
SWEEP REF

Fig. 21: Timing of sampling pulses [7]

The delay required for the pre-trigger has been a significant problem for many applications, since
it may be as large as 70 ns on certain (older) instruments. A 70 ns delay-line leads to considerable signal
distortions especially for the high-frequency components.

To avoid the delay for the pre-trigger a technique named ‘random sampling’was developed about
45 years ago. It requires a strictly periodic signal rather than just the repetitive one for sequential sam-
pling (Fig. 21). By measuring the (constant) repetition frequency of this strictly periodic signal, a predic-
tion of the next pulse arrival time can be given in order to generate a trigger. Today there is little interest
in random sampling, as pre-trigger delays are drastically reduced (12 ns). There are also problems with
jitter, and random sampling needs repetition rates of serveral kHz [7].

Features of modern sampling scopes are summarized in Table 2.

4 Spectrum analyser

Radio-frequency spectrum analysers can be found in virtually every control-room of a modern particle
accelerator. They are used for many aspects of beam diagnostics including Schottky signal acquisition
and RF observation. A spectrum analyser is in principle very similar to a commonsuperheterodyne
broadcast receiver, except for the requirements of choice of functions and change of parameters. It
sweeps automatically through a specified frequency range which corresponds to an automatic turning
of the nob on a radio. The signal is then displayed in the amplitude/frequencyplane. Thirty years
ago, instruments were set manually and had some sort of analog or CRT (cathode ray tube) display.
Nowadays, with the availability of cheap and powerful digital electronics for control and data processing,
nearly all instruments can be remotely controlled. The microprocessor permitsfast and reliable setting of
the instrument and reading of the measured values. Extensive data treatment for error correction, complex
calibration routines, and self tests are a great improvement. However, the user of such a sophisticated
system may not always be aware what is really going on in the analog sectionbefore all data are digitized.
The basis of these analog sections are discussed now.
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In general there are two types of spectrum analysers

– Scalar spectrum analysers (SA) and

– Vector spectrum analysers (VSA)

The SA provides only information of the amplitude of an ingoing signal, while the VSA provides the
phase as well.

4.1 Scalar spectrum analysers

A common oscilloscope displays a signal in the amplitude-time plane (time domain). TheSA follows
another approach and displays it in frequency domain.

One of the major advantages of the frequency-domain display is the sensitivity to periodic pertur-
bations. For example, 5% distortion is already difficult to see in the time domain butin the frequency
domain the sensitivity to such ‘sidelines’ (Fig. 22) is very high (−120 dB below the main line). A very

A [V] A [dB]

t

t
2% AMPLITUDE MODULATION 2% AM IN FREQUENCY DOMAIN

– 40

0

Fig. 22: Example of amplitude modulation in time and frequency domain

faint amplitude modulation (AM) of 10−12 (power) on some sinusoidal signals would be completely in-
visible on the time trace, but can be displayed as two sidelines 120 dB below the carrier in the frequency
domain [8].

We will now consider only serial processing or swept tuned analysers (Fig. 23).

SIGNAL
TUNABLE

BANDPASS

AMPLITUDE

DETECTOR
DISPLAY

Fig. 23: A tunable bandpass as a simple spectrum analyser (SA)

The easiest way to design a swept tuned spectrum analyser is by using a tunable bandpass. This
may be an LC circuit, or a YIG filter (YIG = Yttrium-Iron-Garnet) beyond 1 GHz. The LC filter exhibits
poor tuning, stability and resolution. YIG filters are used in the microwave range (as preselector) and for
YIG oscillators. Their tuning range is about one decade, with Q-values exceeding 1000.

For much better performance the superheterodyne principle can be applied (Fig. 11).

As already mentioned, the nonlinear element (four-diode mixer, double-balanced mixer) delivers
mixing products as

fs = fLO ± fIF . (22)
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Fig. 24: Block diagram of a spectrum analyser

Assuming a signal range from 0 to 1 GHz for the spectrum analyser depicted in Fig. 24 andfLO between
2 and 3 GHz we get the frequency chart shown in Fig. 25.

1

2

3

4

5

2 3 GHZfLO

fS

(+)

(–)

Fig. 25: Frequency chart of the SA of Fig. 24, intermediate frequency= 2 GHz

Obviously, for a wide input frequency range without image response weneed a sufficiently high in-
termediate frequency. A similar situation occurs for AM- and FM-broadcast receivers (AM-IF = 455 kHz,
FM-IF = 10.7 MHz). But for a high intermediate frequency (e.g., 2 GHz) a stable narrow-band IF filter
is difficult to construct which is why most SAs and high quality receivers use more than one IF. Certain
SAs have four different LOs, some fixed, some tunable. For a large tuning range the first, and for a fine
tune (e.g., 20 kHz) the third LO is tuned.

Multiple mixing is necessary when going to a lower intermediate frequency (required when using
high-Q quartz filters) for good image response suppression of the mixers.

It can be shown that the frequency of then−th LO must be higher than the (say) 80 dB band-
width of the (n − 1)th IF-band filter. A disadvantage of multiple mixing is the possible generation of
intermodulation lines if amplitude levels in the conversion chain are not carefullycontrolled.
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The requirements of a modem SA with respect to frequency are

– high resolution

– high stability (drift, phase noise)

– wide tuning range

– no ambiguities,

and with respect to amplitude response are

– large dynamic range (100 dB)

– calibrated, stable amplitude response

– low internal distortions.

It should be mentioned that the size of the smallest IF-bandpass filter width∆f has an important influ-
ence on the maximum sweep rate (or step-width and -rate when using a synthesizer)

df
dt

< (∆f)2 . (23)

In other words, the signal frequency has to remain at∆T = 1/∆f within the bandwidth∆f .

On many instruments the proper relation between∆f and the sweep rate is automatically set to
the optimum value for the highest possible sweep speed, but it can alwaysbe altered manually (setting
of the resolution bandwidth).

Certain SAs do not use a sinusoidal LO signal but, rather, periodic short pulses or a comb spectrum
(harmonic mixer). This is very closely related to a sampling scope, except that the spacing of the comb
lines is different

fs = NfLO ± fIF n = 1, 2, 3, ... (24)

A single, constant input-frequency line may appear several times on the display. This difficulty (multiple
response) was a particular problem with older instruments. Certain modulationand sweep modes permit
the identification and rejection of these ‘ghost’ signals. On modern spectrumanalysers the problem does
not occur, except at frequencies beyond 60 GHz, when a tracking YIG filter may need to be installed.

Caution is advised when applying, but not necessarily displaying, two or more strong (> 10 dBm)
signals to the input. Intermodulation 3rd-order products may appear (fromthe first mixer or amplifier)
and could lead to misinterpretation of the signals to be analysed.

SAs usually have a rather poor noise figure of 20–40 dB as they often donot use preamplifiers
in front of the first mixer (dynamic range, linearity). But with a good preamplifier the noise figure
can be reduced to almost that of the preamplifier. This configuration permits amplifier noise figure
measurements to be made with reasonable precision of about 0.5 dB. The input of the amplifier to be
tested is connected to a hot and a cold termination and the corresponding two traces on the SA display
are evaluated [9–13].

Spectrum analysers can also be used to directly measure the phase noise of an oscillator provided
that the LO phase noise in the SA is much lower than that of the device under test [9]. For higher
resolution, set-ups with delay lines and additional mixers (SA at low frequencies or FFT) are advised.

5 Vector spectrum and FFT analyser

The modern vector spectrum analyser (VSA) is essentially a combination of atwo-channel digital os-
cilloscope and a spectrum analyser FFT display. The incoming signal gets down-mixed, bandpass (BP)
filtered and passes an ADC (generalized Nyquist for BP signals;fsample= 2 BW). A schematic drawing
of a modern VSA can be seen in Fig. 26. The digitized time trace then is split into anI (in phase) and Q
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Fig. 26: Block diagram of a vector spectrum analyser

(quadrature, 90 degree offset) component with respect to the phase of some reference oscillator. Without
this reference, the term vector is meaningless for a spectral component.

One of the great advantages is that a VSA can easily separate AM and FM components.

An example of vector spectrum analyser display and performance is given in Fig. 27 and Fig. 28.
Both figures were obtained during measurements of the electron cloud in the CERN SPS.

Fig. 27: Single-sweep FFT display similar to a very slow scan on a swept spectrum analyser

6 Noise basics

The concept of ‘noise’ was applied originally to the type of audible sound caused by statistical variations
of the air pressure with a wide flat spectrum (white noise). It is now also applied to electrical signals,
the noise ‘floor’ determining the lower limit of signal transmission. Typical noise sources are: Brownian
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Fig. 28: Spectrogram display containing about 200 traces as shown onthe left side in colour coding. Time runs
from top to bottom.

movement of charges (thermal noise), variations of the number of charges involved in the conduction
(flicker noise), and quantum effects (Schottky noise, shot noise). Thermal noise is only emitted by
structures with electromagnetic losses which, by reciprocity, also absorb power. Pure reactances do not
emit noise (emissivity = 0).

Different categories of noise can be defined:

– white, which has a flat spectrum,

– pink, being low-pass filtered, and

– blue, being high-pass filtered.

In addition to the spectral distribution, the amplitude density distribution is also required in order to
characterize a stochastic signal. For signals coming from very many independent sources, the amplitude
density has a Gaussian distribution. The noise power density delivered to aload by a black body is given
by Planck’s formula:

NL

∆f
= hf

(

ehf/kT − 1
)

−1
, (25)

whereNL is the noisepower delivered to a load,h = 6.625 · 10−34 Js the Planck constant andk =
1.38056 · 10−23 J/K Boltzmann’s constant.

Equation (25) indicates constant noise power density up to about 120 GHz(at 290 K) with 1%
error. Beyond, the power density decays and there is no ‘ultraviolet catastrophy’, i. e., the total noise
power is finite.

The radiated power density of a black body is given as

Wr(f, T ) =
hf3

c2
[

ehf/kT − 1
] . (26)

Forhf << kT the Rayleigh–Jeans approximation of equation (25) holds:

NL = kT∆f , (27)
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where in this case,NL is the power delivered to a matched load. The no-load noise voltageu(t) of a
resistorR is given as

u2(t) = 4kTR∆f (28)

and the short-circuit currenti(t) by

i2(t) = 4
kT∆f

R
= 4kTG∆f , (29)

whereu(t) and i(t) are stochastic signals andG is 1/R. The linear averageu(t), i(t) vanishes. Of
special importance is the quadratic averageu2(t), i2(t).

The available power (which is independent ofR) is given by (Fig. 29)

u2(t)

4R
= kT∆f . (30)

R1 = noiseless resistor

R2 = noiseless loadWu = 4kTR1

Fig. 29: Equivalent circuit for a noisy resistorR1 terminated by a noisless loadR2

We define a spectral density function [9]

Wu(f) = 4kTR

Wi(f) = 4kTG (31)

u2(t) =

∫ f2

f1

Wu(f)df .

A noisy resistor may be composed of many elements (resistive network). In general, it is made from
many carbon grains which have homogeneous temperatures. But if we consider a network of resistors
with different temperatures and hence with an inhomogeneous temperature distribution (Fig. 30) the
spectral density function changes to

Wu =
∑

j

Wuj = 4kTnRi , (32)

Tn =
∑

j

βjTj , (33)

whereWuj are the noise sources (Fig. 31),Tn is the total noise temperature,Ri the total input impedance,
andβj are coefficients indicating the fractional part of the input power dissipated in the resistorRj . It is
assumed that theWuj are uncorrelated for reasons of simplicity.
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Fig. 30: Noisy one-port with resistors at different temperatures [9,14]

Wu

Ri Ri

WuWu1 Wu2 Wui

Fig. 31: Equivalent sources for the circuit of Fig. 30.

The relative contribution (βj) of a lossy element to the total noise temperature is equal to the
relative dissipated power multiplied by its temperature:

Tn = β1T1 + β2T2 + β3T3 + · · · (34)

A nice example is the noise temperature of a satellite receiver, which is nothing else than a directional
antenna. The noise temperature of free space amounts roughly to 3 K. Thelosses in the atmosphere,
which is an air layer of 10 to 20 km length, cause a noise temperature at the antenna output of about 10
to 50 K. This is well below room temperature of 290 K.

So far only pure resistors have been considered. Looking at complex impedances, it can be seen
that losses from dissipation occur inRe(Z) only. The available noise power is independent of the mag-
nitude ofRe(Z) with Re(Z) > 0. For Figs. 30 and 31 Eq.(33) still applies, except thatRi is replaced
by Re(Zi). However, it must be remembered that in complex impedance networks the spectral power
densityWu becomes frequency dependent [14].

The rules mentioned above apply to passive structures. A forward-biased Schottky diode (external
power supply) has a noise temperature of about T0/2 + 10%. A biased Schottky diode is not in thermo-
dynamic equilibrium and only half of the carriers contribute to the noise [9]. But it represents a real 50Ω
resistor when properly forward biased. For transistors and in particular field-effect transistors (FETs), the
physical mechanisms are somewhat more complicated. Noise temperatures of 50 K have been observed
on a FET transistor at 290 K physical temperature.
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7 Noise-figure measurement with the spectrum analyser

Consider an ideal amplifier (noiseless) terminated at its input (and output) witha load at 290 K with an
available power gain (Ga). We measure at the output [10,15]:

Pa = kT0∆fGa . (35)

ForT0 = 290 K (or often 300 K) we obtainkT0 = −174 dBm/Hz (−dBm = decibel below 1 mW).
At the input we have for some signal Si a certain signal/noise ratio Si/Ni and at the output S0/N0. For
an ideal (= noiseless) amplifier Si/Ni is equal to S0/N0, i. e., the signal and noise levels are both shifted
by the same amount. This gives the definition of the noise figure F:

F =
Si/Ni

S0/N0
. (36)

The ideal amplifier has F = 1 or F = 0 dB and the noise temperature of this amplifieris 0 K. The
real amplifier adds some noise which leads to a decrease in S0/N0 due to the noise added (= Nad):

F =
Nad+ kT0∆fGa

kT0∆fGa
. (37)

For a linear system the minimum noise figure amounts to Fmin = 1 or 0 dB. However, for nonlinear
systems one may define noise figures F < 1. Now assume a source with variable noise temperature con-
nected to the input and measure the linear relation between amplifier output power and input termination
noise temperature (Ts = Tsource).

In a similar way a factor Y can be defined:

Y =
Te + TH

Te + TC

Te =
TH − YTC

Y − 1

F =

[

T(H/290)− 1
]

− Y [(TC/290)− 1]

Y − 1
, (38)

whereTe is the effective input noise temperature (see Fig. 32) andTH andTC are the noise temperatures
of a hot or cold input termination. To find the two points on the straight line of Fig. 32 one may switch
between two input terminations at 373 K (100◦ C) and 77 K. For precise reading of RF power, calibrated
piston attenuators in the IF path (Intermediate Frequency Superheterodyne Receiver) are in use. This is
the hot/cold method. The difference between the Y-factor and the hot/cold method is that for the latter
the input of the amplifier becomes physically connected to resistors at different temperatures (77, 373 K).
For the Y-factor, the noise temperature of the input termination is varied by electronic means between
300 K and 12000 K (physical temperature always around 300 K).

As a variant of the 3-dB method with a controllable noise source, the excessnoise temperature
definition (Tex = TH − TC) is often applied. A switchable 3-dB attenuator at the output of the amplifier
just cancels the increase in noise power fromTH − TC. Thus the influence of nonlinearities of the power
meter is eliminated. To measure the noise of one port one may also use a calibrated spectrum analyser.
However, spectrum analysers have high noise figures (20–40 dB) and the use of a low-noise preamplifier
is recommended. This ‘total power radiometer’ [11] is not very sensitive but often sufficient, e. g.,for
observation of the Schottky noise of a charged particle beam. Note that the spectrum analyser may also
be used for two-port noise figure measurements. An improvement of this ‘total power radiometer’ is
the ‘Dicke Radiometer’ [11]. It uses a 1 kHz switch between the unknown one port and a controllable
reference source. The reference source is made equal to the unknown via a feedback loop, and one

22



POUT

TS [K]
Source temperature

NOISE FREE+
+ Slope≈ kGa∆f
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T0 = 300 K Thot = 12000 K(Drawing not to scale)

Fig. 32: Relation between source noise temperatureTs and output power Pout for an ideal (noise free) and a real
amplifier [10,15]

obtains a resolution of about 0.2 K. Unfortunately, switch spikes sometimes appear. Nowadays, switch-
free correlation radiometers with the same performance are available [6].

The noise figure of a cascade of amplifiers is [6,9,10,14,15]

Ftotal = F1 +
F2 − 1

Ga1
+

F3 − 1

Ga1Ga2
+ · · · (39)

As can be seen from Eq. (39) the first amplifier in a cascade has a very important effect on the total noise
figure, providedGa1 is not too small and F2 is not too large. In order to select the best amplifier from a
number of different units to be cascaded, one can use the noise measureM:

M =
F− 1

1− (1/Ga)
. (40)

The amplifier with the smallest M has to be the first in the cascade [15].
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