

CLIC Re-baselining

Project Meeting, December 2012

D. Schulte for the CLIC team

Strategy

- Optimise the first energy stage
 - Focus has been on 3TeV
 - Alternative options should also be studied, most importantly a klystron-drive first stage
 - Include upgrade considerations
- Split design into relatively independent pieces
 - Including all cost, in particular also civil engineering
 - Make a simple cost model for each area for overall optimisation
 - Identify internal cost saving potential in each area and associated R&D, e.g. main linac module length
 - Study the cost saving and required R&D
- Form a discussion group for each area
 - Main beam sources: Yannis Papaphilippou
 - Drive beam generation: Roberto Corsini
 - Two-beam acceleration: Alexej Grudiev
 - Klystron-based first stage: Igor Syratchev
 - Please contact them with any good idea
- Full optimisation in common working group
 - A number of studies can directly report to this group, e.g. klystrons and modulators

Simplified Diagram

Variable	Meaning	Current value
I _{drive}	Drive beam current	101A
E _{drive}	Drive beam energy	2.37GeV
τ_{RF}	Main lianc RF pulse length	244ns
N _{sector}	Number of drive beam sectors per linac	4
N _{combine}	Combination number	24
f _r	Repetition rate	50Hz
N	Main beam bunch charge in linac	3.72e9
n_b	MB bunches per pulse	312
n _{cycle}	Spacing between MB bunches	6 cycles
E ₀	MB energy at linac entrance	9GeV
E _{cms}	Centre-of-mass energy	500GeV
G	Main linac gradient	100MV/m

Drive Beam Generation Complex

 $P_{klystron}$, $N_{klystron}$, L_{DBA} , ...

Main Beam Generation Complex

P_{klystron}, ...

Cost vs. Structure Length

Klystron-driven First Stage: RF Unit Layout

Compared to NLC, the energy gain per unit in CLIC'k case is 26% lower (need more klystrons per meter), but the unit length is ~ 3 time shorter.

RF Pulse Compressor and Distribution System

Distribution system will be new design

Pulse compressor will be based on SLED-II design, removing parts that were needed for the tests only

Other options appear possible and remain to be studied

Klystrons

- Using less ambitious parameters (60MW, 2μs pulses, 50Hz)
- Focusing is critical
 - Can use permanent magnet focusing for highest efficiency
 - Or use superconducting solenoid, which is easier but slightly less efficient and more costly
- Klystrons are a large part of the cost
 - Started cost estimate based on the components of the klystron: Gun, body, collector, RF window/ RF network, assembly/ brazing, solenoid, vendor profit
 - In reasonable agreement with price of klystrons
 - Assuming reasonable higher profit to cover risk of prototype
 - Relevant is cost reduction as function of number of klystrons, i.e. learning factor

Main Beam Generation

Significant cost is in the different linacs

- cost optimisation for each linac, respecting RF and beam dynamics limits
 - note: scenario A uses about 100% more RF than scenario B but needs only 40%
- review choice of RF frequency for each linac
- review of 1 vs. 2GHz in the damping ring and impact on cost
- review cost of long pulses for low energy operation

Can we remove the electron pre-damping ring?

Main Beam Generation (cont.)

Could re-use a linac for other beam

- e.g. booster linac to produce electron beam for positron production
- the drive beam accelerator could be used for the same purpose

• ...

Could power the booster linac with the drive beam

Need to carefully evaluate the consequences

Drive Beam Generation

Scope

Have a good understanding of the functional dependence of the cost

Most important are drive beam accelerator klystrons and modulators

- Need to verify the optimisation of these systems, e.g. klystron peak power
- strong dependence on learning factor

Combination of two klystrons into one accelerating structure is possible

- RF and beam dynamics constrains are respected (Avni Aksoy and Rolf Wegner)
- reduces structure number by 50%, reduces linac length to 70%
- cost impact to be confirmed

Cost of the buildings needs to be determined and integrated in the model

Conclusion

- The work has started
 - Impressive progress on a klystron-based alternative
 - Technical results on drive beam accelerator
 - Important questions raised for klystrons and modulators
 - Cost models are progressing
 - But much more work

More results at the CLIC workshop

Reserve

Some Examples of Saving Options for Current Design

Cost

- Alternative main linac structure fabrication
- Longer main linac modules
- Maybe do not need electron pre-damping ring
- CVS overdesigned for 500GeV
- Main beam sources RF power quite high
- Shorter drive beam pulses in first stage can reduce cost of modulator (modular design)
- Combining pairs of drive beam accelerator klystrons
- Using cheaper copper type in drive beam accelerator structure
- Cost impact of 1GHz damping ring RF
- Cost impact of long main beam pulses for low energy operation
- **–** ...

Power

- Permanent drive beam turn-around magnets
- **–** ...
- For many items need R&D since choices were made for a reason