PHYSICAL STORAGE AND INTERCONNECTS

ALEXANDRU GRIGORE

DAQ WORKSHOP, 13.03.2013

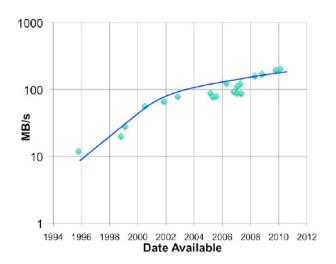
AGENDA

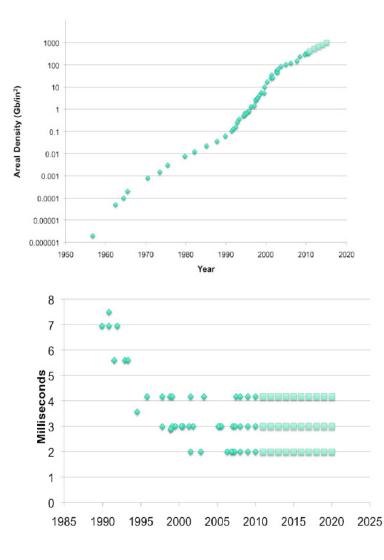
Storage media

- Hard Disk Drives present facts, tuning, near future
- Solid State Storage advantages, considerations
- Solid Class Memory

Media connectivity

- Trends
- + Experiments information


HDD STORAGE FACTS


Areal density skyrocketed to 1TB/in^2

Latency has settled down to 2, 3 and 4.1 milliseconds

A high performance HDD would have a max. sustained bandwidth of ~171MB/s

Performance, not capacity, is the issue with HDD storage.

HDD STORAGE SPARING MECHANICS

RAID

Stripe data across multiple disks

Short stroking

• Place data only on outer section of disk platters to reduce the seek time

Thin Provisioning

• Use virtual volumes to constrain data to small areas of a physical disk

Parallel file systems

• Link multiple individual disk spindles to increase system throughput

Virtualization

 Use software to spread volumes across multiple drives; a more sophisticated extension of RAID 0

Faster drives

15K RPM drives over 10K RPM drives

HDD STORAGE NEAR FUTURE

Writing

 Heat Assisted Magnetic Recording

Mechanics

Magnetic fluid bearings

Cooling

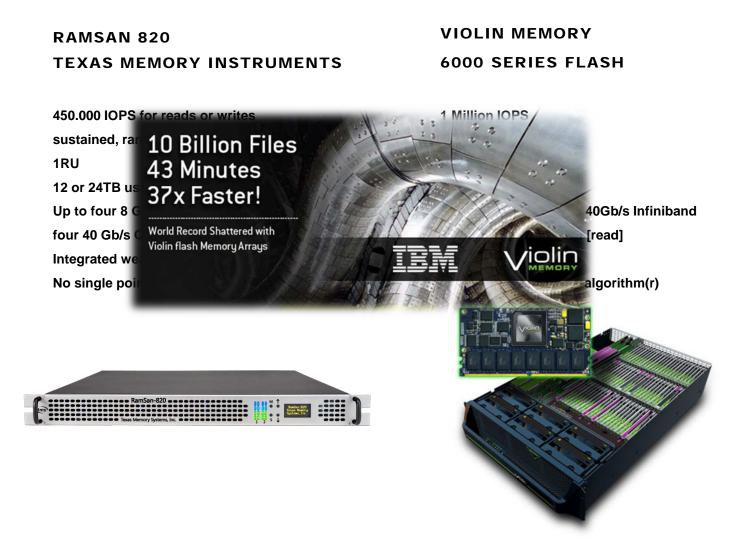
 Disk based cooling with helium

Capacity

 60TB hard drives on their way

++ challenges in RAID [Uli's presentation]

RPMs & Hybrids


- A slower drive might appear in the enterprise space
- If this happens it will have been caused by the combination of solidstate storage and slower disk drives into storage systems that provide the same or better performance to cost ratio.

SOLID STATE STORAGE FLASH

	S	LC	MLC-2	MLC-3	MLC-4	
Bits per cell	-	1	2	3	4	
Performance	Fas	test	< <u> </u>		Slowest	
Endurance	Lon	gest	< <u> </u>		Shortest	
Capacity	Smallest		< <u> </u>		Largest	
Error Prob.	Lowest		< <u> </u>		Highest	
Price per GB	Hig	hest	< <u> </u>		Lowest	
Applications	Ente	erprise Mostly Consu		Consumer	Consumer	
		\$/GB		\$/IOPS	IOPS/watt	
SSD (SLC)		\$5 - \$40		\$0.005 - \$0.15	1000 - 15000	
SSD (MLC)		\$	\$0.63 <mark>- \$</mark> 4	\$0.004 - \$0.05	1000 - 15000	
HDD (enterprise)		\$0.50 - \$1		\$1 - \$3	10 - 30	
HDD (desktop)		\$0.05 - \$0.37		\$1 - \$ 4	10 - 40	

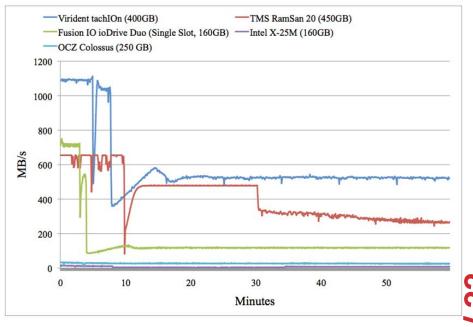
Source: Demartek 2012

FLASH MEMORY ARRAYS

7 / 22

SOLID STATE STORAGE TODAY'S FACTS

Price


- more expensive than hdd [varies a lot f() of the technology].
- steep decrease in price NAND Flash, 2010 3.2\$/GB, 2015 0.5\$/GB
 [Source: IDC, #235155, June 2012]

Endurance

- Single Level Cell 10^5 writes/cell
- Multi Level Cell 10^4 writes/cell
- Triple Level Cell ~300 writes/cell

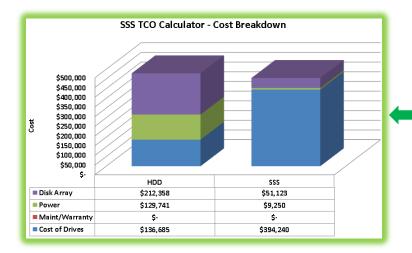
Reliability

write amplification
 [wear leveling, data deduplication]

STORAGE CLASS MEMORY THE NEXT STORAGE SYSTEM

Projected characteristics of storage class memory devices

Capacity	1 TB	CPU cycles	Device	Comment	
Read or write access time	100 ns	107-108	Disk	Nonvolatile, slow, and	
Data rate	>1 GB/s		<i>a</i> .	inexpensive	
a			-Gap in access time-		
Sustained I/O rate $[1/(0.1 \ \mu s + 4 \ \text{KB}/1 \ \text{GB/s}) = 1/4.1 \ \mu \text{s}]$	238,000 SIO/s	10 ³	SCM	Nonvolatile, fast, and inexpensive	
Sustained bandwidth (4 KB/4.1 µs = 975 MB/s)	975 MB/s	10^{2}	DRAM	Volatile, fast, and expensive	
Write endurance	10 ¹² writes	10-100	L2 and L3 cache	Volatile, fast, and expensive	
PCM – Phase Change Me	1	Ll cache	Volatile, fast, and expensive		
Ŭ	-				


- The key concept involves the use of certain chalcogenide alloys (typically based on germanium, antimony, and tellurium) as the bistable storage material.
- A PCM-based SCM is expected to have roughly the specifications shown above by 2020.

CASE STUDY ALICE TDS - HDD TO SSD

300GB, SATA, R6

IO transfer size: 16K Application IO: 50/50 HDD size: 3.5" RPM: 10k # of drives: 40*16 % consumed: 10% || 22% ||40% Maintenance: no

of instances: 1

128GB SLC, R6

I/O improvement: 171% || 497% || 985%

IOPS gain: 60,541 || 175,611 ||348,216

Form factor: 2.5"

Total SSS: 150 || 330 || 600

Power reduction: 96.5% || 92.4% ||86,1%

TCO f() used storage space:

10% - TCO impact \$258,684 (gain) **22% - TCO impact \$8,583 (gain)** 40% - TCO impact \$401,617 (invest)

EXPERIMENTS STORAGE

ALICE, ATLAS, CMS, LHCb all* use HDDs for data storage.

ALICE: SAN

ATLAS: DAS

CMS: SAN

LHCb: SAN [monolithic]

*LHCb uses an SSD disk pool for metadata storage.

11 / 22

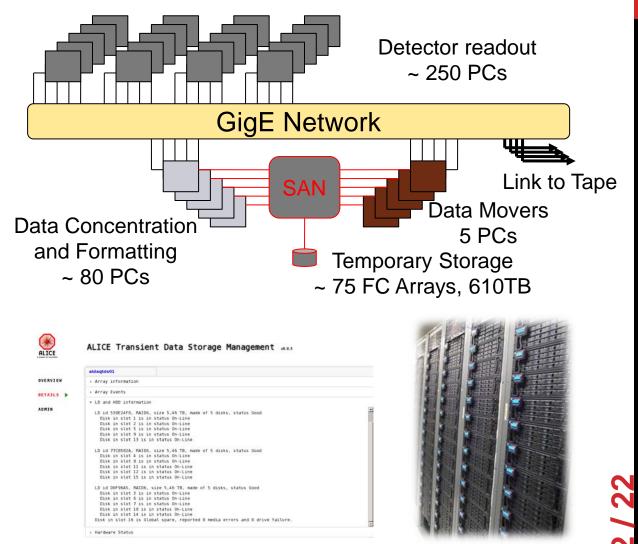
EXPERIMENTS STORAGE ALICE

75 Disk Arrays x 2FC 4G ports x 3 volumes, R6

SATA II

WD 320GB, ST 2TB HDDs

225 volumes, 610 TB


Stornext (affinity)

FC4Gb/s and 8Gb/s

Experienced the "RAID write hole" [-> Uli's presentation]

LS1: same architecture, vertical scaling ?

LS2: in progress

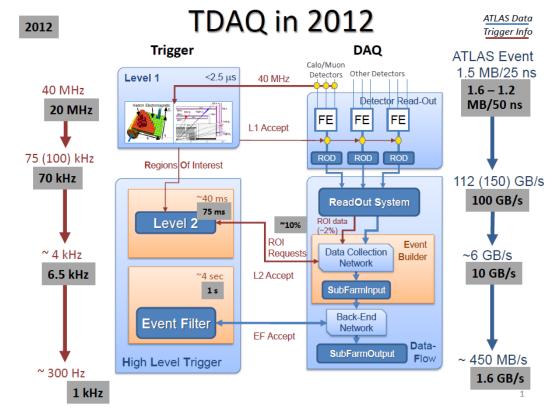
EXPERIMENTS STORAGE ATLAS

4RU

6+3 SubFarmOutputs x

24x1TB HDDs, R5 x

3 RAID controllers


SAS / SATA

Highly scalable and cost effective, add one SFO, get an extra 300MB/s

LS1 - same architecture

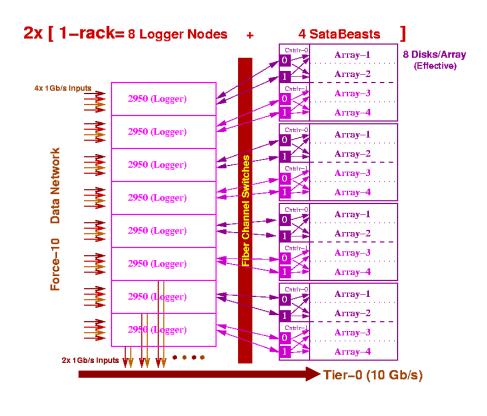
Will fine tune horizontal and vertical scaling

LS2 – work in progress

EXPERIMENTS STORAGE CMS

SMs: 16x Dell 2950s

Each 2950 owns 2 SataBeast arrays


8x Nexsan SataBeast disk enclosures

RAID-6

256TB usable capacity

LS1: Change everything, probably go for NetApp

LS2: Work in progress

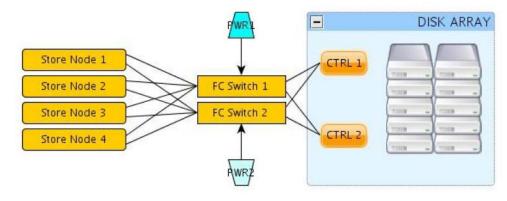
EXPERIMENTS STORAGE LHCb

DDN9900, 150HDD [oo. 600], 1TB and 2TB Storage is used for data, user's home, programs

Published via NFS and SAMBA

Quantum Stornext

8Gb/s FC


LS1 upgrade

- more HDDs
- change machines

LS2

Probably go to DAS architecture [(c) ATLAS]

Netapp machine with SSD for virtual machines

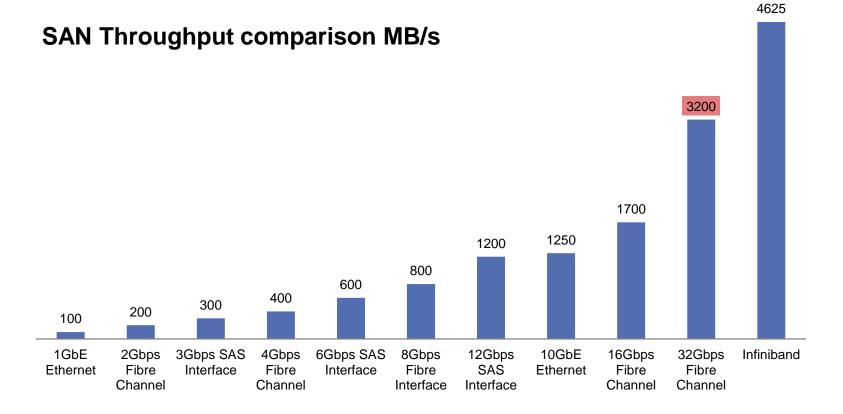
INTERCONNECTS

Interconnects trends

Experiments info

16/22

INTERCONNECTS TRENDS

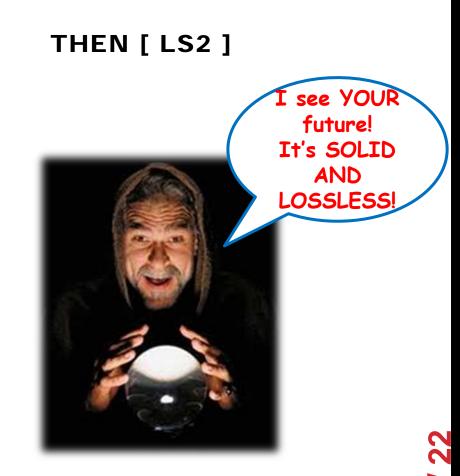

(R)evolutions to notice: FC PCIe v4 SATA Express

SAS [24Gb/s in 2016]

	2005	2007	2008	2009	2010	2011	2012	2013	2014
Storage									
Networking									
FC	4Gb/s		8Gb/s			16Gb/s			32Gb/s
FCoE				10Gb/s					
IB	20Gb/s		40Gb/s			56Gb/s		100Gb/s	
iSCSI		10Gb/s							
Disk Drive									
Connectors									
SAS	3Gb/s			6Gb/s			12Gb/s		
SATA	3Gb/s				6Gb/s				
SATA uSSD						6Gb/s			
								being	
SATA Express								ratified	
Host bus									
						v4			
PCle		4Gb/s			8Gb/s	approved			

22

SAN INTERCONNECTS COMPARISON


18/22

EXPERIMENTS INTERCONNECTS

NOW [LS1] HDD SATA II, SAS, NL-SAS

Storage FC: 4Gb/s, 8Gb/s iSCSI

Networking 1GbE, 10GbE

BUZZWORDS

Interconnects

- Intel buys QLogic's Infiniband segment [Jan 2012]
- Melanox bought Voltaire [Nov 2010] moving into Ethernet
- Oracle buys 10.2% of Melanox shares [Oct 2010]

SSS

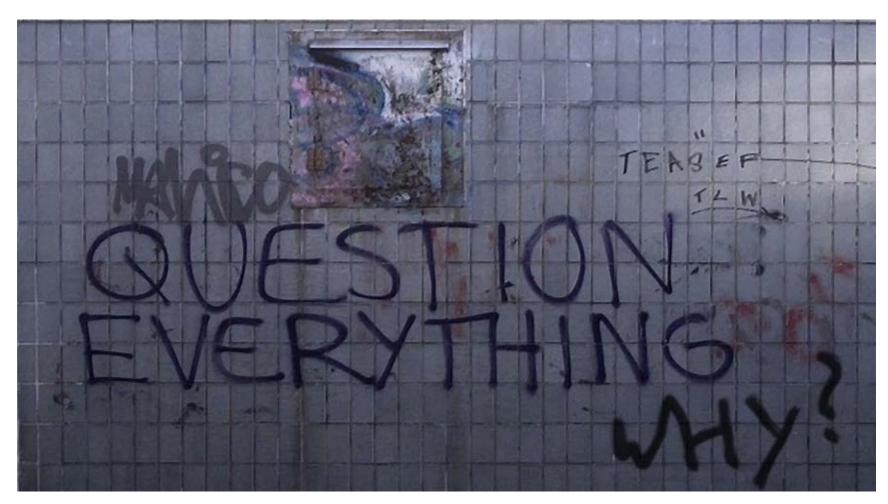
- Violin enters PCIe SSD market [March 2013]
- IBM bought Texas Memory Instruments [Aug 2012]
- Apple bought Anobit [Jan 2012]
- Oracle bought Pillar [Jan 2011]

10GbE, 30GbE

move from SAN to NAS?

Converged Networking

Unified Storage


Massive Array of Idle Disks – go green

THANK YOU

ALICE DAQ Team Costin Grigoras [ALICE Offline] Wainer Vandelli [ATLAS] Georgiana Lavinia Darlea [CMS] Olivier Raginel [CMS] Gerry Bauer [CMS] Rainer Schwemmer [LHCb]

