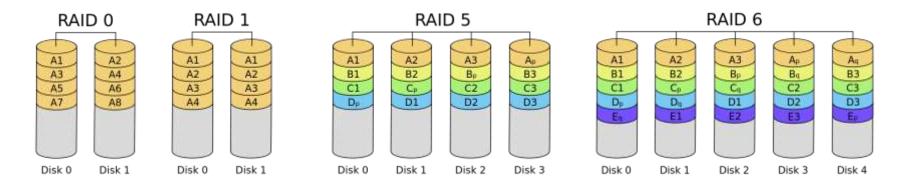
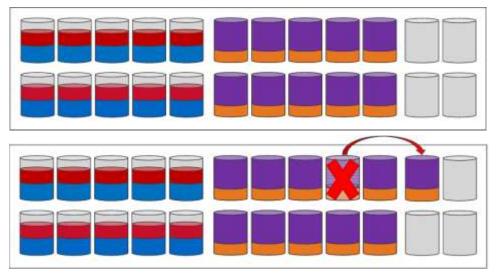
News on Network Infrastructure and Fault Tolerance U. Fuchs (PH-AID-DA)

Contents

- Fault-tolerant disk systems
 - RAIDs, and why they should be re-considered
 - DDP Dynamic Disk Pools
- Data Center Networks, From Lossy to Loss-Less
 - Present situation
 - The Fiber Channel roadmap
 - Converged networks, DCB
 - FCoE

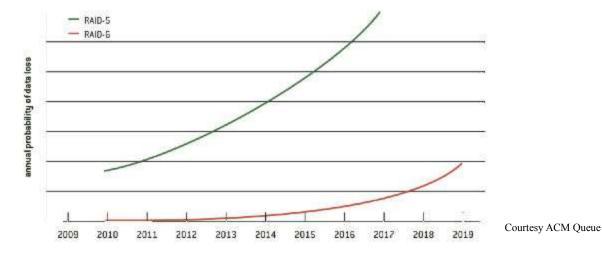
Why RAID ? Or why not.


RAID - DDP


13 March 2013

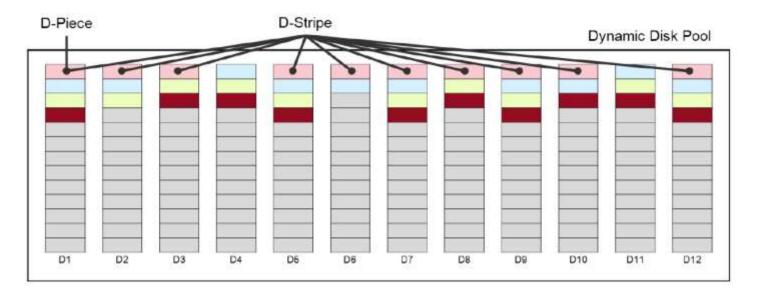
- RAID (Redundant Array of Inexpensive Disks)
 - Combine multiple disk drives into a logical unit to increase the level of redundancy or performance, depending on the RAID level.

RAID level	Description	Fault tolerance	Array failure rate	Read performance	Write performance
RAID – 0	Block-level striping without parity or mirroring	0 (none)	1-(1-r) ⁿ	nX	nX
RAID – 1	Mirroring without parity or striping	n-1	r ⁿ	nX	1X
RAID – 5	Block-level striping with distributed parity	1	½n(n−1)r²	(n-1)X	(n−1)X
RAID – 6	Block-level striping with double distributed parity	2	‰n(n-1)(n-2)r³	(n-2)X	(n−2)X


- RAID Failures
 - Single disk-failure
 - Content of failed disk is re-constructed from Parity stripe (drive rebuild) and a placed on a spare disk

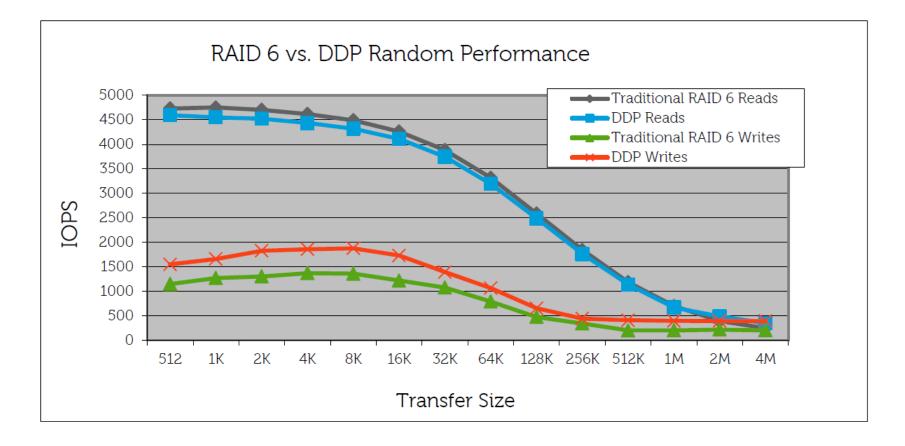
- Double disk-failure
 - In RAID-5: data lost
 - In RAID-6: second Parity stripe can save the situation
 - In case of a single bit error during read, the rebuild will fail.
 Data lost.

RAID Failures

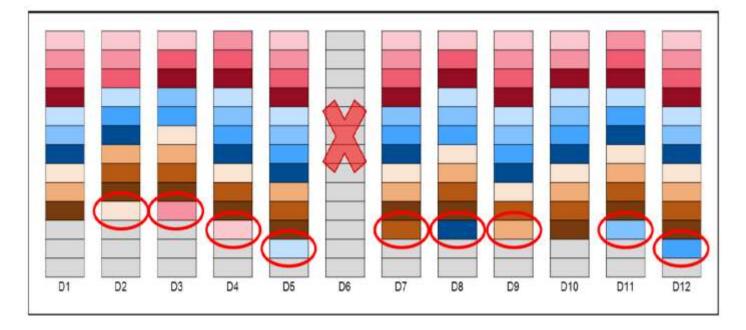

- RAID drive rebuilds take a long time
 - 8x 350GB drives: ~ 1-2 hours
 - 8x 1TB drives: ~ 1 day
 - 8x 3TB drives: ~3 days
 - Soon: 8x 20TB drives: ... ~ 1 month, 16x20TB: ~ 2 months, ...
- Further drive failures during rebuild are probable (disks running at 100%)
 - Rebuild failure (for RAID5) or double-rebuild (up to time x 4) for RAID-6

Projected Relative Reliability of Single- and Double-Parity RAID

Something has to change.

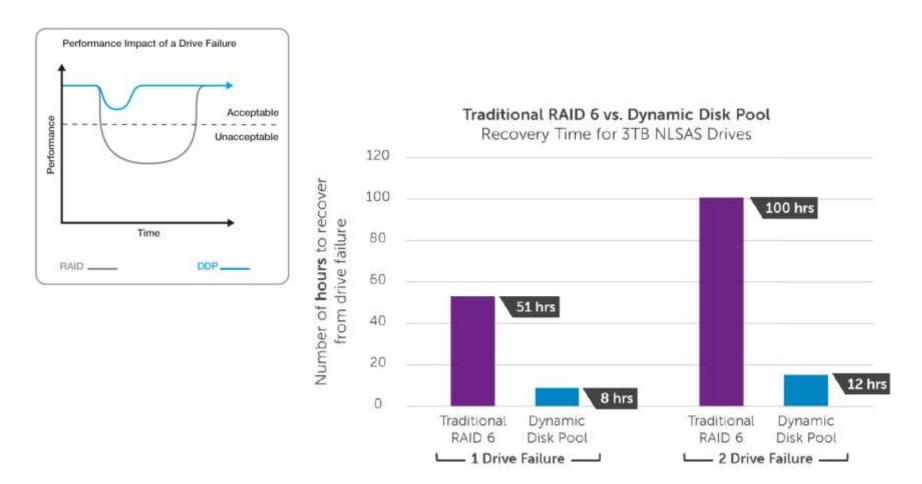

- DDP Dynamic Disk Pools
 - Each data-stripe is written to some disks (not all) as data-piece
 - Two parity pieces, no spare drives

- Immediate Gain:
 - Space (no spare drives)
 - Performance (not all drives are used, less contention)
 - Due to non-uniform usage: easily re-sizable on-line, no rebuild necessary.


13 March 2013

- DDP Dynamic Disk Pools
 - Performance comparison with RAID6:

DDP – Dynamic Disk Pools

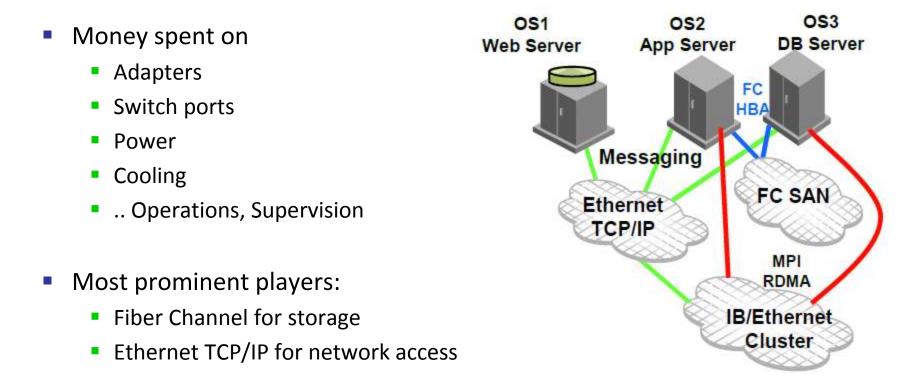

 In case of failure, the missing D-Pieces are recalculated and <u>appended to</u> working disks (avoiding two D-Pieces of the same stripe on the same disk).

- Advantage:
 - Rebuild is fast (many disk read, many disk write) [RAID: many-to-one]
 - Non-affected volumes stay available [RAID: whole volume heavily impacted]
 - General performance drop is much lighter than in RAID

13 March 2013

- DDP Dynamic Disk Pools
 - Rebuilding ...

13 March 2013

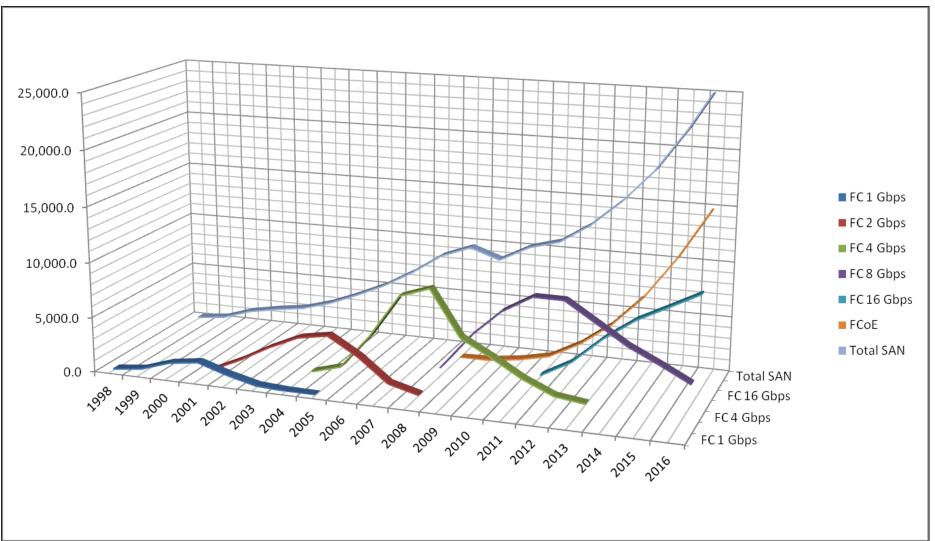

Trends in Datacenter networks,

From Lossy to Loss-less

From Plug-fests to a Converged Infrastructure

Datacenter networks

- Situation today
 - Servers are connected to several networks
 - ... have several network interfaces (+software stacks)
 - ... provide interesting cabling challenges



FiberChannel Roadmap

- FC clearly dominates the SAN market
- Well understood, convenient to use and implement
- Continuous speed and Bandwidth/\$ improvements
- Aggressively pursuing Energy Efficiency (best Efficiency/Watt rating)

Product Naming	Throughput (MBps)	Line Rate (GBaud)	T11 Spec Technically Completed (Year)‡	Market Availability (Year)‡
1GFC	200	1.0625	1996	1997
2GFC	400	2.125	2000	2001
4GFC	800	4.25	2003	2005
8GFC	1600	8.5	2006	2008
16GFC	3200	14.025	2009	2011
32GFC	6400	28.05	2012	2014
64GFC	12800	TBD	2015	Market Demand
128GFC	25600	TBD	2018	Market Demand
256GFC	51200	TBD	2021	Market Demand
512GFC	102400	TBD	2024	Market Demand

FiberChannel Roadmap

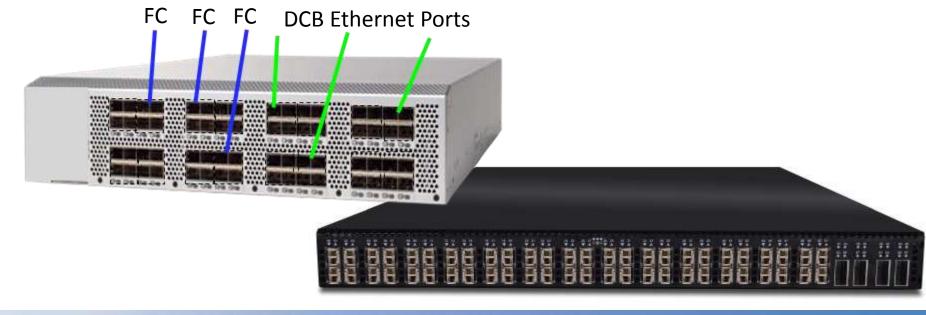
FiberChannel Roadmap

- FCoE (Fiber Channel over Ethernet) standards available since 2008
- Encapsulation of FC in Ethernet; another upper-layer protocol
- Same cabling (SFP+) for 8G FC, 16G FC and 10G FCoE

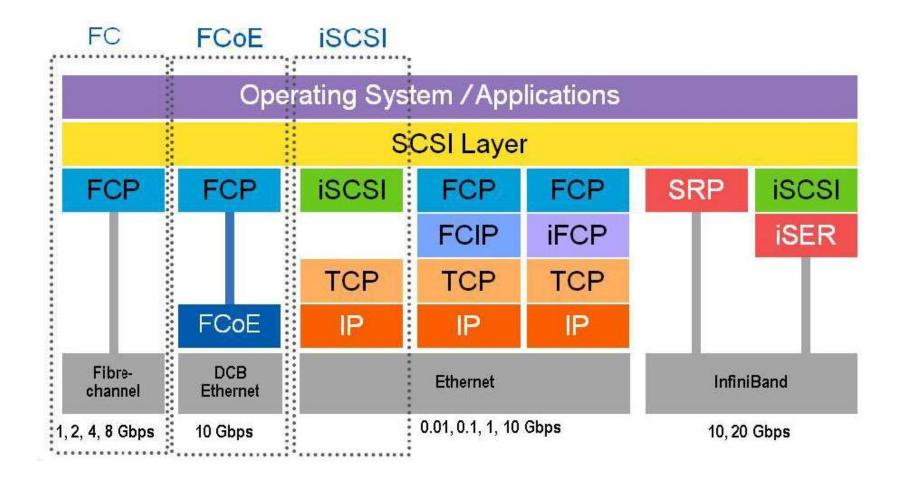
Product Naming	Throughput (MBps)	Equivalent Line Rate (GBaud)†	Spec Technically Completed (Year)‡	Market Availability (Year)‡
10GFCoE	2400	10.3125	2008	2009
40GFCoE	9600	41.225	2010*	Market Demand
100GFCoE	24000	103.125	2010*	Market Demand

FCoE challenge

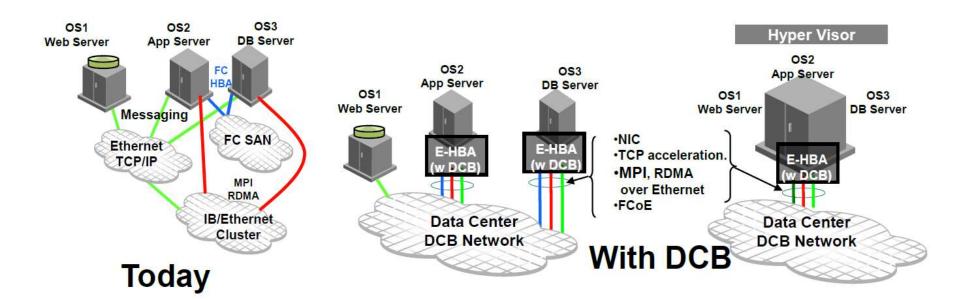
FCoE is the encapsulation of FC in Ethernet


thernet	FCoE	FC Frame	SCSI	
-memer	A Design of the second s	Marcal Marcallance	and the second se	

- The Challenge:
 - FC (by design) is a loss-less protocol
 - Ethernet (by design) is a lossy protocol
- The Solution:
 - We need loss-less Ethernet with extensions: <u>DCB (Data Center Bridging)</u>
 - Advances in Ethernet recently defined in IEEE 802.1, specifically:
 - Priority-based Flow Control (PFC) 802.1Qbb
 - Enhanced Transmission Selection (ETS) 802.1Qaz
 - DCB (capability) eXchange (DCBX) Protocol 802.1Qaz
 - CN -- Congestion Notification (802.1Qau)
 - Possible future Multi-pathing (IETF- TRILL, IEEE 802.1aq-SPB, et.al.)
 - FCoE requires these Ethernet extensions to be implemented, Lossless switches and fabrics (e.g., supporting IEEE 802.3 PAUSE), Jumbo frame support is strongly encouraged


13 March 2013

DCB


- FCoE Fabrics must be built with DCB Switches that:
 - Are called Fiber Channel Forwarder (FCF)
 - Are part of a lossless Ethernet Fabric and have DCB Lossless Ethernet ports
 - Support Ethernet and IP standards for switching, pathing and routing
 - Support FC standards for switching, pathing and routing
 - Adapt between FCoE, FC and Ethernet

DCB stack

- Datacenter networks
 - Dramatic Interface reduction in adapters, switch ports, cabling, power and cooling
 - 4-6 cables can be reduced to 2 Interfaces/cables per server
 - Seamless connection to the installed base of existing SANs and LANs
 - Effective sharing of high bandwidth links

Thank you.