

Overview of CMS Upgrades and DAQ

DAQ@LHC workshop 12-14 Mar 2013 Frans Meijers (CERN-PH-CMD) On behalf of the CMS DAQ group

CMS design parameters and DAQ requirements

Detectors

otal weight : 12,500 t	Overall length: 21.6 m
verall diameter : 15 m	Magnetic field: 4 Tesla

Detector	Channels	Control	Ev. Data	
Pixel	60000000	1 GB	50 (kB)	
Tracker	10000000	1 GB	650	
Preshower	145000	10 MB	50	
ECAL	85000	10 MB	100	
HCAL	14000	100 kB	50	
Muon DT	200000	10 MB	10	
Muon RPC	200000	10 MB	5	
Muon CSC	400000	10 MB	90	
Trigger		1 GB	16	

Average Event size			
Max LV1 Trigger			
Online rejection			
System dead time			

1 Mbyte 100 kHz 99.999% ~ %

Two Trigger levels

CMS DAQ1 (2008-2012)

Front-end model – lossless DAQ

FM 13-3-2013

Uniform interface - Readout

Uniform Interface – TTS

Full-EVB and emulator mode

Event Size vs Pileup (50ns)

Due to acceptance: number of reconstructed vertices = ~0.7 PileUp

DAQ @ LHC: Introduction

☐ Upgrade time line and terminology

— opgrade and and terminology								
•••	2010 2011 2012	2013 2014	2015 2016 2017	2018	2019 2020	2021 2	2022 202	23 2030
	Phase 0 Run 1	LS1	Run 2	LS2	Phase Run 3	l	LS3	Phase II Run 4
	(Prepare Run 2)		(Prepare Phase I)		(Prepare Phase II)			
	Consolida	Ultimate luminosity		HL-LHC				
\sim	√s = 13~14 TeV							
CMS	25 ns bunch spacing							
	L _{inst} 1 x10 ³⁴ cm ⁻² S ⁻¹		L _{inst} 2-3 x10 ³⁴ cm ⁻² s ⁻¹		L _{inst} 5 x10 ³⁴ cm ⁻² s ⁻¹			
AS	μ ~ 27		μ ~ 55–81		μ ~ 140 [with levelling]			
3	$\int L_{inst} \sim 50 \text{ fb}^{-1}$		$\int L_{inst} > 350 \text{ fb}^{-1}$		L _{inst} 6-7 x10 ³⁴ cm ⁻² s ⁻¹			
ATI					$\mu \sim 192$ [without levelling]			
					$\int L_{inst} \sim 3000$	0 fb ⁻¹		
Cb	L _{inst} 4-6 x10 ³² cm	- ² S ⁻¹	L _{inst} 1-2 x10 ³³ cn	า - 2 s -1				
LH($\mu \sim 1.8$ [with leve	lling]	$\mu \sim 4-6$ [with lev	elling]				
	$\int L_{inst} > 10 \text{ fb}^{-1}$		$\int L_{inst} \sim 50 \text{ fb}^{-1}$					
() (H)	L _{inst} 1-2 x10 ²⁷ cm	- 2 S -1						
	[with levelling]							
AI	$\int L_{inst} > 1 \text{ nb}^{-1}$		$\int L_{inst} > 10 \text{ nb}^{-1}$					

10

CMS Upgrade program

Scope described in Technical Proposal for the Upgrade of the CMS detector through 2020 http://cdsweb.cern.ch/record/1355706 LHCC-2011-006

Three stages

LS1 Projects: in production

- Completion of muon coverage (ME4)
- Improve muon operation (ME1), DT electronics
- Replace HCAL photo-detectors in HF (new PMTs) and HO (HPD→SiPM)

Online equipment replacement

DAQ @ LHC: Introduction

☐ Upgrade time line and terminology

~Phase-I Post – LS1 Run 2

13

DAQ2 for post-LS1

Equipment replacement cycle

PC and network replaced typically each 5 years

New requirements

- Increased data sizes due to higher pile-up
- Some sub-detectors will be replaced which lead to higher data volumes
 - Eg HCAL sensors, new Pixel
- Some sub-det new back-end electronics in uTCA standard with serial link to cDAQ
- Data aggregation of links with a range of 1–10 Gbps throughput

Keep "external" boundaries

- Inputs (custom electronics)
 - About 500 2-4 Gbps "Legacy" FEDs
 - About 20-100 6-10 Gbps New FEDs
- Output to HLT farm
 - About 500 "Legacy" nodes with ~1-2 Gbps input
 - About 400 new nodes ~4 Gbps input
- Need also to operate for Heavy-Ion conditions

DAQ2 for post-LS1

- TCDS (Trigger Control and Distribution System)
 - Need for more TTC partitions
 - Rationalisation of
 - TCS (Trigger Control System)
 - TTC
 - TTS (Trigger Control System)
- Re-visit implementation of lumi-section
 - Example of a feature which was introduced as an afterthought after TDR
- File based HLT
 - Take advantage of advances of storage technology (in speed)
 - Write full EVB output of 100 kHz to storage (for ~1 m)
 - Absorb the HLT initialisation time
 - Full decoupling of two frameworks (XDAQ and CMSSW)
- Possibility to use HLT farm as a cloud resource for "offline processing"

uTCA based off-detector electronics

- Development by BU (Boston University) for HCAL
- This structure is also considered for some of the Trigger sub-systems
- AMC13 might evolve in to CMS "common platform"
- AMC13 sends data to central DAQ over multi-gbps serial link (6 Gbps in prototype)
- (P2P) Protocol for data link to central DAQ has been developed

L1 trigger upgrade (I)

8

Trigger Upgrade: The Plan

Upgrade the Calo, Muon and Global Triggers

- architecture highly configurable, based mainly on 3 boards (with large FPGA, high bandwidth optics, memory for LUTs)
- parallel commissioning of new trigger while operating present trigger
- goal to provide improvements for 2015, commission full functionality for 2016

Trigger Improvements

- Improved electromagnetic object isolation using calorimeter energy distributions with pile-up subtraction;
- ➤ Improved jet finding with pile-up subtraction;
- ✓ Improved hadronic tau identification with a much narrower cone;
- ✓ Improved muon p_T resolution in difficult regions;
- ✓ Isolation of muons using calorimeter energy distributions with pile-up subtraction:

Calo Trigger

- LS1: optical split (oSLB & oRM) and operate slice of upgrade in parallel

L1 trigger upgrade (II)

Trigger Upgrade: The Plan

9

o Muon

- Upgrade/integrate Track Finders: endcap (CSCTF), barrel (DTTF) and Overlap regions
- options for connection between
 Muon and Calo triggers

o Global

- Upgrade the Trigger Control and Distribution System, separate from GT
- Again use standard μTCA boards
 with large FPGAs for new algorithms

- Combine all 3 muon systems in new TF layer
 - Muon redundancy used earlier in chain
- Switch over to new system when fully produced and commissioned
- Target: 2016
- Some options on how to connect RPC, and how TF layer factorised
- Add connection to calo trigger upgrade to provide muon isolation
 - Baseline calo regions → GMT

Cost and Schedule

- The cost tables and schedule not yet reviewed
 - Cost scale is ~5M CHF
 - Goal to complete hardware and initial trigger firmware/software for 2016 physics
- ➤ Hardware is one thing we need a physics ready trigger system (including FM, SW, trigger tables). This is a major project.

Trigger Control & Distribution System

Operational mid 2014

DAQ2 for post-LS1

DAQ2

- re-implementation with up-to-date technology
- Typically 10x less nodes with 10x more performance
 - DAQ1: 2 x 2Gbps Myrinet and 3 x 1GbE
- Consider 10 GbE, 40 GbE, IB FDR (56 Gbps)
- Timescale
 - Design, evaluation, order, for delivery and installation Q4 2013
 - Switchover DAQ1 to DAQ2 Apr-2014, commissioning, improvements

DAQ2 for post-LS1

~Phase-I Post – LS2 Run 3

DAQ for post-LS2

- Adiabatic changes for CMS
 - Increased data sizes due to higher pile-up
 - Some sub-detectors will be replaced which lead to higher data volumes
 - Eg HCAL sensors
 - More sub-det new back-end electronics in uTCA standard with serial link to cDAQ
- Equipment replacement cycle
 - PC and network replaced typically each 5 years
- Two scenarios
 - "box to box" replacement
 - Re-implement with up-to-date technology (like DAQ2)

Phase-II Post – LS3 Run 4

CMS Phase-II

- HL-LHC
 - IL of 5 x 10**34, pileup 100-200
- Detector
 - New Tracker
 - Forward Calo?, Muons?
- DAQ and trigger
 - Track trigger
 - All sub-detectors will have new off-detector electronics
 - Entirely new central-DAQ system

Trigger Performance and Strategy – Interim Report

- Key goal: maintain the physics acceptances of leptonic, photonic, and hadronic trigger objects similar to 2012 (especially for low-mass processes like Higgs)
- Two key components under consideration for Phase 2:
 - 1. L1 tracking trigger
 - 2. a significant increase of L1 rate, L1 latency and HLT output rate
- Tracking at L1 will help maintain rates for muons, electrons & possibly taus. Only limited improvement expected for photons & hadronic objects
- o For these, it may be important to increase L1 rate substantially. An increase in rate requires significant changes to frontend electronics, so also consider
 - 3. Increasing L1 latency from present 4 μs (Tracker) or 6.4 μs (ECAL) limit Allows more time for more sophisticated algorithms in new FPGAs and architecture
- "Target parameters" to focus the discussion
 - 1 MHz rate and 20 μs latency
- CDAQ/HLT initial look: trends for networking/switching and multi-core computing circa 2023
 - "1 MHz input looks feasible" → output rate would be up to 10 kHz

2. & 3. Basic Parameter Scenarios

- Surveyed subsystems, DAQ, Computing led to consideration of following basic parameter scenarios (so far):
 - Scenario 1: L1 rate = 100 kHz, L1 Latency = $6.4 \mu s$ (present = $4 \mu s$)
 - Used up to now to guide Phase 2 Tracker
 - Scenario 2 ("non-invasive"): L1 rate = 150 kHz, L1 Latency = 6.4 μs
 - Survey among sub-systems, (e.g. ECAL), suggests that L1 trigger rate can go up to 150 kHz without change of front-end electronics (to be further confirmed).
 - Scenario 3: L1 rate = up to 1MHz, L1 Latency: up to 20 μs
 - Survey suggests feasible IF significant upgrades are carried out
 - To set the scale: Task Force on EB FEE replacement → ~10M CHF and 26 months of shutdown
- Clearly any such change requires good physics justification, and estimates of work/cost for each subsystem
- Aim for final decision on this by early 2014
- In the interim, propose that ongoing work for Phase 2 be compatible with all scenarios
 - Implies design changes for upgrade electronics (e.g. Tracker)

Phase-II Tracker

p_T modules types: "2S Module"

Phase-II Tracker

p_T modules types: "PS Module"

- > Sensors:
 - Top sensor: strips
 - ★ 2×25 mm, 100 μm pitch
 - Bottom sensor: long pixels
 - \star 100 μ m \times 1500 μ m
- > Readout:

 - Bottom: pixel chips wirebonded to hyb
 - Correlation logic in the pixel chips
- No interposer, sensors spacing tunable
- Power estimates
 - ★ Pixels + Strips + Logic ~ 2.62 + 0.51 + 0.38 W = 3.51 W
 - ★ Low-power GBT + GBLD + GBTIA ~ 0.5 + 0.2 + 0.1 = 0.8 W
 - ★ Power converter ~0.75 W
 - Total ~ 5.1 W, pixel chip is the driver

Pixel chip in the design phase.

First analogue blocks (in 65 nm) to be submitted in 2013.

Phase-II Tracker

Latency and trigger rate

- Latency
 - Long pixel chip design already compliant
 - ★ 1024 cell pipeline, 25.6 µs
 - CBC requires one design iteration
- > L1 accept rate
 - Requires data reduction in the readout path for the CBC
 - Could be implemented in the CBC or in the concentrator
 - ★ Advantages and disadvantages under discussion
 - Not a big margin left for 1 MHz frequency
 - ★ Probably OK?
- > Bottom line:
 - New specs can be implemented, with significant effort
 - We need to decide now

12/14/2012 D. Abbaneo 5

HLT with "normal" PCs

Server PCs in CERN/IT data center

Dual CPU servers, cost normalised to 2GB memory/core Forecast 20% improvement per year Gives 0.8^10=0.10 in 10 years, so gain factor ~10

FM 29-06-2012 Trigger Strategy - DAQ 1

DAQ

- Post-LS3 assumptions
 - Replaced BE electronics
 - 2 level trigger-daq (as now), full events at HLT (as now)
 - Assume 10 MB events size (1 MB now)
- For 1 MHz L1A, 10 MB event size
 - Assume 100 Gbps DAQ link (between BE and cDAQ)
 - Canonical system
 - 1000 FEDs with 100 Gbps DAQ link
 - Switch throughput 100 Tbps
- 40 MHz L1 appears impossible
 - Due to on-detector electronics

OTHER

HLT farm

- So far, using dual-CPU (x86) server PCs
- Strategy to deploy "offline" framework and processors (CMSSW)
- Work of fully-built events
- Actually, after LS1
 - intend to run in offline mode (file to file)
 - rely on efficient multi-thread version
- No specific HLT work done on other platforms
 - GPU
 - Large number of cores a la, Xeon-Phi

BACKUP MATERIAL

DACO

CMS DAQ upgrade for post LS1 (DAQ2)

FEROL

- FEROL
 - Input: custom protocol
 - Output: 10 GbE serial, reduced TCP/IP sender in FPGA
- Receiver with NIC in PC with standard driver and TCP/IP stack

FEROL aggregation

- Aggregation n-to-1, example
 - 16 FEROLs each sending 2 Gbps over 10 GbE link
 - Concentrated in one 40 GbE NIC into PC
 - Reliability and Congestion handled by TCP/IP
- USC SCX 180m,
 - with OM3 fibres up to 200 m
 - 40 GbE (with 4 lanes 10 Gbps) max. is 150 m NOT feasible
- Network useful to re-configure when fault with optic, PC, etc

IB EVB

- Performance Scaling with multi-layer switch network?
 - 3 layer Clos
- Implement with "Director" switch or 36-port units?

HLT subfarm

- HLT divided in 48 sub-farms, each with 1 BU and typically 24 HLT nodes
- BU writes to filesystem on ramdisk (~256 GB) with 2-4 GB/s
- HLT nodes (~24) in sub-farm cross mount filesystem
- HLT sub-farm output (1 in 100 events) collected on BU onto normal disk
- HLT output collected from all sub-farms to NAS